| 研究生: |
張星悅 Hsing-Yue Chang |
|---|---|
| 論文名稱: |
溶解反應對碳酸岩孔隙率與水力傳導係數之影響 Evolution of Porosity and Hydraulic Conductivity Induced by Dissolution in Carbonate Rocks |
| 指導教授: |
陳瑞昇
Jui-Sheng Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 孔隙率 、溶解反應 、水力傳導係數 、碳酸岩 |
| 外文關鍵詞: | dissolution, carbonate rocks, hydraulic conductivity, porosity |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地下流體流經多孔隙介質會帶動化學物種遷移,並伴隨發生地球化學反應,由於多孔隙介質礦物固體材料之溶解或沉澱反應,使得多孔隙介質之孔隙率改變,進而改變多孔隙介質之水力傳導係數。本研究目的是探討地下流體流經碳酸岩之溶解反應,對孔隙率與水力傳導係數之影響。
藉由實驗室批次與定流量管柱實驗,分別了解碳酸鈣表面的溶解速率,以及流體流經管柱時所發生之溶解反應所導致之孔隙率與水力傳導係數的變化。定流量管柱實驗中分別在不同流量、濃度、粒徑的條件下,觀察流體流經碳酸岩溶解反應對孔隙率與水力傳導係數之變化。結果顯示批次實驗裡CaCO3固體之溶解速率隨HCl溶液濃度增加而增加。定流量管柱實驗時,HCl溶液濃度愈高與流量愈大,皆會導致Ca2+生成量增加,反之HCl溶液濃度愈低與CaCO3固體顆粒間溶解反應較為完全,但Ca2+生成量相對增加趨緩。本研究所選定的CaCO3固體顆粒粒徑差異太小,使得CaCO3固體顆粒對孔隙率與水力傳導係數變化並未有顯著影響出現。本研究中流體流經管柱中CaCO3固體顆粒以SEM掃描發現,CaCO3固體顆粒產生溶解反應後,而產生CaCO3再結晶於CaCO3固體顆粒表面。
While flowing through a porous medium, migration of solute causes mineral dissolution and precipitation, thus modifying porosity and hydraulic conductivity. This study investigates the evolution of porosity and hydraulic conductivity induced by dissolution of carbonate rocks.
Batch experiments were carried out to understand the dissolution rates of CaCO3. Column experiments with constant flow rate were subsequently executed to investigate the evolution of porosity and hydraulic conductivity affected dissolution in carbonate rocks. Evolution of porosity and hydraulic conductivity induced by dissolution under different conditions of flow rates, HCl concentration and particles size were examined. Results show that higher HCl concentrations cause a faster CaCO3 dissolution of the porous medium in batch experiment. Moreover, higher HCl concentrations and larger flow rates cause faster increments in porosity and permeability. The size of CaCO3 particle has insignificant influences on the evolution of porosity and permeability. Additionaly, re-crystallized CaCO3 particles were found in SEM.
參考文獻
﹝1﹞ 陳文山,「台灣的岩石」,2002年岩盤工程研討會論文集,V21-22,中華大學,台灣新竹,2002年11月。
﹝2﹞ 何春蓀,普通地質學,三版,五南圖書出版公司,台灣台北,民國九十三年。
﹝3﹞ 張元耀,「孔隙率與化學反應之交互作用之溶質傳輸歷程」,國立臺灣大學,碩士論文,民國九十六年。
﹝4﹞ Steefel, C. I., and A. C. Lasaga, “A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems” , American Journal of Science, Vol. 294, pp. 529–592, 1994.
﹝5﹞ Kelemen, P. B., J. A. Whitehead, E. Aharonov, and K. A. Jordahl, “Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle” , Journal of Geophysical Researchh, Vol. 100(B1), pp. 475–496, 1995.
﹝6﹞ Whitaker, F. F., and P. L. Smart, “Saline groundwater circulation in carbonate buildups: An overview and case study from the Bahamas”, in Diagenesis and Basin Development, edited by A. D. Horbury and A.G. Robinson (eds.), American Association of Petroleum Geologists., Vol. 36, pp. 113– 132, 1993.
﹝7﹞ Eriksson, N., and G. Destouni, “Combined effects of dissolution kinetics, secondary mineral precipitation, and preferential flow on copper leaching from mining waste rock” , Water Resources Research, Vol. 33(3), pp. 471– 483, 1997.
﹝8﹞ Rege, D. S., and H. S. Fogler, “Competition among flow, dissolution, and precipitation in porous media” , AIChE journal, Vol. 35(7), pp. 1177– 1185, 1989.
﹝9﹞ Fredd, C. N., and H. Scott Fogler, “influence of transport and reaction on wormhole formation in porous media” , AIChE journal, Vol. 44, pp. 1933-1949, 1998.
﹝10﹞ Viles, H. A., and C. A. Moses, “Weathering nanomorphologies: Their experimental production and use as indicators of carbonate stone decay”, Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 31, pp. 347-357, 1998.
﹝11﹞ Renard,F., J.P. Gratier, P. Ortoleva, E. Brosse, and B. Bazin, “ Self- organization during reactive fluid flow in a porous medium” , Geophysical Research Letters, Vol. 25(3), pp. 385-388, 1998.
﹝12﹞ De Graaff, J. W. M., R. D. Schuiling, P. J. H. R. Speck, and J. J. P. Zijlstra, “Geochemical engineering in chalk: Neutralization of waste sulfuric acid”, Annales Societatis Geologorum Vol. 5(2), 345– 350, 1997.
﹝13﹞ Singurindy, O., and B. Berkowitz, “ Evolution of hydraulic conductivity by precipitation and dissolution in carbonate rock” , Water Resources Research, Vol. 39(1), 1016, 2003.
﹝14﹞ Singurindy, O.,and B. Berkowitz, “ The role of fractures on coupled dissolution and precipitation patterns in carbonate rocks” , Advances in Water Resources, Vol. 28, pp. 507–521, 2005.
﹝15﹞ Chadam, J., D. Hoff, E. Merino, P. Ortoleva, and A. Sen, “Reactive infiltration instabilities” , IMA Journal of Applied Mathematics, Vol. 36, pp. 207-221, 1986.
﹝16﹞ Chen and Liu, “Numerical simulatuin of the evolution of aquifer porosity and species concentration during reactive transport” , Computers & Geosciences, Vol. 28, pp. 485-499, 2002.
﹝17﹞ Chen and Liu, “Interaction of reactive fronts during transport in a homogeneous porous medium with initial small non-uniformity” , Journal of Contaminant Hydrology, Vol. 72, pp. 47-66, 2004.
﹝18﹞ 陳其瑞,台灣的大理石,經濟部中央地質調查所,台灣台北,民國八十五年。
﹝19﹞ Krauskopf, K. B., Introduction to Geochemistry, McGraw-Hill, New York, 1967.
﹝20﹞ 行政院環境檢驗所,火焰式原子吸收光譜儀(NIEA M111.00C) ,民國九十年。
﹝21﹞ “Cole-Parmer Co.”, 緯成企業股份有限公司。
﹝22﹞ 林敬二,儀器分析,五版,美亞書版股份有限公司,台灣台北,民國八十八年。
﹝23﹞ “JEOL”, 台灣捷東股份有限公司。
﹝24﹞ 王如意、易任,應用水文學,新編上冊,國立編譯館出版,台灣台北,民國九十二年。
﹝25﹞ 譚義績,地下水,財團法人中興工程科技研究發展基金會,台灣台北,民國九十四年。