跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何萬青
Wan-Ching Ho
論文名稱: 熱化學氣相沉積法製備橫向奈米碳管之研究
Properties of lateral carbon nanotube grown by thermal CVD
指導教授: 黃豐元
Fuang-Yuan Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 94
中文關鍵詞: 接觸電阻拉曼散射光譜熱化學氣相沉積法奈米碳管
外文關鍵詞: contact resistance, Raman Spectroscopy, Thermal CVD, carbon nanotube
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    實驗利用常壓熱化學氣相沉積(Thermal Chemical Vapor Deposition, Thermal CVD)成長橫向奈米碳管。配合I-line 微影技術,及金屬層蝕刻定義元件形狀。利用單因子實驗,設定不同操作參數,如製程溫度、乙烯在碳源中比例、甲烷流量、製程時間、不同載流氣體種類等,而得到數量、形貌、品質優良橫向奈米碳管,並結合微影
    定義合成元件結構。並利用拉曼散射光譜(Raman Spectroscopy)分析,判定奈米碳管石墨化程度好壞。橫向奈米碳管元件利用I-V 電性量測分析,探討元件電性穩定性。並透過公式推算,計算元件電阻。由於元件成長橫向奈米碳管之催化劑為鎳金屬層,亦藉由本實驗設計結構,計算鎳金屬層和橫向奈米碳管之接觸電阻問題。
    奈米碳管之物理特性廣受各界的期待,但由於成長定位方式,及製程相容之不成熟,故奈米碳管之應用產品仍在實驗階段。本次實驗成功利用不同製程參數,控制橫向奈米碳管的成長數量及品質。利用兼容IC 製程,配合微影定義元件形狀,傳統成長奈米碳管技術成長橫向奈米碳管。也由設計的元件結構合成橫向奈米碳管橋建元件,整
    合元件之品質與穩定,對未來奈米碳管之定位與應用盡一分心力。


    目錄 摘要……………………………………………………………………..Ⅰ 目錄……………………………………………………………………..Ⅱ 表目錄…………………………………………………………………..Ⅳ 圖目錄…………………………………………………………………..Ⅴ 第一章緒論…………………………………………………………..1 1.1 前言………………………………………………………….1 1.2 研究動機………………………………………..………….4 第二章奈米碳管之簡介..……………………………………………6 2.1 奈米碳管之製備方法…………………………………….. 6 2.2 熱化學沉積法……………………………………………..10 2.3 奈米碳管的排列結構及電性……………………………..13 第三章實驗方法………………………...………………………..16 3.1 利用熱裂解化學氣相沉積法成長奈米碳管……………..16 3.2 橫向奈米碳管之成長…………………………………....20 3.3 整合橫向奈米碳管到元件製作…………………………..22 3.4 拉曼散射……………………………….………………...24 3.5 橫向成長奈米碳管元件之電性量測….………………...26 3.6 實驗儀器簡介……………………………………………..29 第四章實驗結果與討論…………………………………………33 4.1 奈米碳管的結構分析與鑑定…..………………………..33 4.2 橫向結構與成長橫向奈米碳管…………………………..35 4.3 成長目標………………………………….……………...38 4.4 實驗參數對橫向奈米碳管石墨化的影響及電性分析....40 4.5 不同乙烯在碳源中比例的影響….……………………...43 4.6 不同甲烷流量之影響………….………………………...53 4.7 利用氮氣為載氣之影響………….……….……………..58 4.8 利用微波電漿化學氣相沉積成長橫向奈米碳管..……..69 第五章結論………………………………………………………75 參考文獻………………………………………………………………76

    參考文獻
    [1] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical propertie of carbon
    nanotubes, Imperial College Press, (1998)
    [2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol.354, 1991,
    pp.56-58.
    [3] G. Overney, W. Zhong, and D. Z. Tomanek, Phys. D, 27 (1993) 93
    [4] S. Ihara, S. Itoh, “Helically coiled and toroidal cage forms of graphitic carbon”,
    Carbon, 33 (1995) 931
    [5] H. Cui, O. Zhou, and B. R. Stoner, “Deposition of aligned bamboo-like carbon
    nanotubes via microwave plasma enhanced chemical vapor deposition”,
    Journal of Applied Physics, 88 (2000) 6072
    [6] S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy,
    “A formation mechanism for catalytically grown helix-shaped graphite
    nanotubes”, Science, 265 (1994) 635
    [7] X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chem, “Synthesis of multi-walled carbon
    nanotubes by microwave plasma-enhanced chemical vapor deposition”, Thin
    Soild Films, 390 (2001) 130
    [8] Y. Wen, and Z. Shen, “Synthesis of regular coiled carbon nanotubes by
    Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis”,
    Carbon, 39 (2001) 2369
    [9] 楊正杰, 張鼎張, “銅金屬和低介電常數材料與製程”, 第七卷, 第四期。
    [10] Proceeding of Meeting of The International Technology Roadmap for
    Semiconductors (ITRS), December 2003.
    [11] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon
    Nanotubes, Imperial College Press (ICP), 1998.
    [12] M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young’s
    modulus observed for induvidual carbon nanotubes”, Nature, Vol.381, 1996,
    pp.678-680.
    [13] N. Hamada, S. I. Sawada, and A. Oshiyama, “New one-dimensional counductors:
    graphitic microtubules”, Physics Review Letter, Vol.68, 1992, pp.1579-1581.
    [14] Q. H. Wang, T. D. Corrigan, J. Y. Dai, and R. P. H. Chang, “Field emission from
    nanotube bundle emitters at low field”, Appl. Phys. Lett., 70 (1997) 3308
    [15] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P.
    Nordlander, D. T. Colbert, and R. E. Smalley, ”Unraveling nanotubes: field
    emission from an atomic wire”, Science, 269 (1995) 1550
    [16] W. A. D. Heer, A. Chatelain, and D. Ugarte, ”A carbon nanotube field-emission
    electron source”, Science, 270 (1995) 1179
    [17] Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, and E. W. Seeling, “A
    nanotube-based field-emission flat panel display”, Appl. Phys. Letts., 72 (1998)
    2912
    [18] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density
    from carbon nanotube field emitters”, Appl. Phys. Lett., 75 (1999) 873
    [19] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J.
    E. Jung, N. S. Lee, G. S. Park, and J. m. Kim, ”Fully sealed, high-brightness
    carbon-nanotube field-emission display”, Appl. Phys. Letts., 75 (1999) 3129
    [20] P. G. Collins, and A. Zettl, “Unique characteristics of cathode carbon-nano
    tube-matrix field emitters”, Phys. REV. B, 55 (1997) 9391
    [21] H. J. Kim, J. H. Han, W. S. Yang, J. B. Yoo, C. Y. Park, I. T. Han, Y. J. Park, Y. W.
    Jin, J. E. Jung, N. S. Lee, and J. M. Kim, ”Fabrication of field emission triode
    using carbon nanotubes”, Materials Science and Emgineering C, 16 (2001) 27
    [22] J. M. Bonard, H. Kind, T. Stockli, and L. O. Nilsson, “Field emission from
    carbon nanotubes: the first five years”, Solid-State Electronics, 45 (2001) 893
    [23] A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: a critical
    review”, Solid-State Electronics, 45 (2001) 963
    [24] Xiaolei Liu, Chenglung Lee, Chongwu Zhou, and Jie Han, “Carbon nanotube
    field-effect inverters”, Applied Physics Letters, Vol.79, No.20, 12 November
    2001, pp.3329-3331.
    [25] Richard Martel, Hon-Sum Philip Wong, Kevin Chan, and Phaedon Avouris,
    “Carbon nanotube field effect transistors for logic applications”, Proceeding of
    International Electron Device Meeting(IEDM)2001, 9-12 December 2001,
    Washington DC, USA, pp.159-162.
    [26] R. Martel, V. Derycke, J. Appenzeller, S. Wind, and Ph. Avouris, “Carbon
    nanotube field-effect transistors and logic circuits”, Proceeding of Design
    Automation Conference 2002, 10-14 June 2002, pp.94-98.
    [27] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and, C. M. Lieber,
    “Carbon nanotube–based nonvolatile random access memory for molecular
    computing” Science, 289 (2000) 94
    [28] H. M. Cheng, Q. H. Yang, and C. Liu, “Hydrogen storage in carbon nanotubes”,
    Carbon, 39 (2001) 1447
    [29] A. K. M. F. Kibria, Y. H. Mo, K. S. Park, K. S. Nahm, and M. H. Yun,
    “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown
    carbon nanotubes in KOH medium”, International Journal of Hydrogen
    Energy, 26 (2001) 823
    [30] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J.
    Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386
    (1997) 377
    [31] W. Qikun, Z. Changchun, L. Weihua, and W. Ting, “Hydrogen storage by carbon
    nanotube and their films under ambient pressure”, International Journal of
    Hydrogen Energy 27 (2002) 497 – 500
    [32] C. Cantalinia, L. Valentinib, L. Lozzic, I. Armentanob, J. M. Kennyb, and S.
    Santucci, “NO2 gas sensitivity of carbon nanotubes obtained by plasma
    enhanced chemical vapor deposition”, Sensors and Actuators B 93 (2003)
    F333–337
    [33] J. Chung, K. H. Lee, and J. Lee, “Multi-walled carbon nanotube sensors”, Solid
    State Sensors, Actuators and Microsystems 2E80.P
    [34] A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas
    ionization sensors using carbon nanotubes”, Narure , 424 (2003) 171
    [35] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai,
    “Nanotube molecular wires as chemical sensors”, Science, 287 (2000) 622
    [36] P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity
    of electronic properties of carbon nanotubes”, Science, 287 (2000) 1801
    [37] Y. T. Jang, C. H. Choi, S. I. Moon, J. H. Ahn, Y. H. Lee, and B. K. Ju, “A novel
    micro-gas sensor using laterally grown grown carbon nanotube”, Solid State
    Sensors, Actuators and Microsystems (2003) 3E49P
    [38] F. Kreupl, A. P. Graham, G.. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger,
    and W. Honlein, “Carbon nanotubes in interconnect applications”,
    Microelectronic Engineering 64 (2002), pp.399-408.
    [39] B. Q. Wei, R. Vajtal, and P. M. Ajayan, “Reliability and current carrying capacity
    of carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 1172
    [40] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor
    based on a single carbon nanotube”, Nature, 393 (1998) 49
    [41] C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson. P. R. Poulsen, J.
    Nygard, and J. Borggreen, “Gold nanoparticle single-electron transistor with
    carbon nanotube leads”, Appl. Phys. Lett., 79 (2001) 2106
    [42] P. W. Chiu, G. S. Duesberg, U. D. Weglikowska, and S. Roth, “Interconnection of
    carbon nanotubes by chemical functionalization”, Appl. Phys. Lett., 80 (2002)
    3811
    [43] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon
    nanotube field-effect transistors”, Nature, 242 (2003) 654
    [44] H. T. Soh, C. F. Quate, A. F. Morpurgo, C. M. Marcus, J. Kong, and H. Dai,
    “Integrated nanotube circuits: Controlled growth and ohmic contacting of
    single-walled carbon nanotubes” Appl. Phys. Lett., 75 (1999) 627
    [45] A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, M.
    Lundstrom, and H. Dai, “Self-Aligned Ballistic Molecular Transistors and
    Electrically Parallel Nanotube Arrays”, NANO LETTER, Vol. 4 (2004)
    1319-1322
    [46] Y. S. Park, K. S. Kim, H. J. Jeong, W. S. Kim, J. M. Moon, K. H. An, D. J. Bae, Y.
    S. Lee, G. S. Park and Y. H. Lee, “Low pressure synthesis of single-walled
    carbon nanotubes by arc discharge”, Synthetic Metals, 126 (2002) 245
    [47] H. J. Lai, M. C. C. Lin, M. H. Yang and A. K. Li, “Synthesis of carbon nanotubes
    using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge”,
    Materials Science and Engineering C, 16 (2001) 23
    [48] H. Zeng, L. Zhu, G. Hao, and R. Sheng, “Synthesis various forms of carbon
    nanotubes by AC arc discharge”, Carbon, 36 (1998) 259
    [49] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. D. L. Chapelle, S. Lefrant,
    P. Deniard, R. Lee, and J. E. Fisxher, “Large-scale production of single-walled
    carbon nanotubes by the electric-arc technique”, nature, 388 (1997) 756
    [50] B. I. Yakobson and R. E. Smalley, American Scientist, 85 (1997) 324
    [51] Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, J. M.
    Kim, “Low temperature synthesis of carbon nanotube by microwave
    plasma-enhanced chemical vapor deposition”, Synthetic Metals 108 (2000)
    159-163
    [52] X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chen, “Synthesis of multi-walled
    carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”,
    Thin Solid Films, 390 (2001) 130-133
    [53] J. H. Han, S. H. Choi, T. Y. Lee, J. B. Yoo, C. Y. Park, H. J. Kim, I. T. Han, S. Yu,
    W. Yi, G. S. Park, M. Yang, N. S. Lee, and J. M. Kim, “Effects of growth
    parameters on the selective area growth of carbon nanotubes”, Thin Solid
    Films, 409 (2002) 126
    [54] Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, and J. M. Kim, “In situ
    diagnosis of chemical species for the growth of carbon nanotubes in
    microwave plasma-enhanced chemical vapor deposition”, Diamond and
    Related Materials, 11 (2002) 59
    [55] U. Kim, R. Pcionek, D. M. Aslam, and D. Tomanek, “Synthesis of high-density
    carbon nanotube films by microwave plasma chemical vapor deposition”,
    Diamond and Related Materials, 10 (2001) 1947
    [56] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith,
    and R. E. Smalley, “Elastic strain of freely suspended single-wall carbon
    nanotube ropes”, Appl. Phys. Lett., 74 (1999) 3803
    [57] Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J.
    Kong, and H. Dai, “Electric-field-directed growth of aligned single-walled
    carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 3155
    [58] A. Ural, Y. Li, and H. Dai, “Electric-field-aligned growth of single-walled
    carbon nanotubes on surfaces”, Appl. Phys. Lett., 81 (2002) 3464
    [59] Y. T. Janga, J. H. Ahnb, B. K. Jua, Y. H. Leec, “Lateral growth of aligned
    mutilwalled carbon nanotubes under electric field”, Solid State
    Communications 126 (2003) 305–308
    [60] Y. H. Lee, Y. T. Jang, C. H. Choi, D. H. Kim, C.W. Lee, J. E. Lee, Y. S. Han, S.
    S. Yoon, J. K. Shin, S. T. Kim, E. K. Kim, and B. K. Ju, “Direct Nanowiring
    of Carbon Nanotubes for Highly Integrated Electronic and Spintronic
    Devices”, Adv. Mater. 2001, 13, No. 18
    [61] Y. Y. Wei, and G. Eres, “Directed assembly of carbon nanotube electronic
    circuits”, Appl. Phys. Lett., 76 (2000) 3759
    [62] Y. S. Han, J. K.Shin, and S. T. Kim, “Synthesis of carbon nanotube bridges on
    patterned silicon wafers by selective lateral growth”, Appl. Phys. Lett., 90
    (2001) 5731
    [63] 鄭木棋, “奈米碳管元件之製作與分析”

    QR CODE
    :::