跳到主要內容

簡易檢索 / 詳目顯示

研究生: 潘君豪
Chun-hao Pan
論文名稱: 由伯氏多項式對形狀限制的回歸函數定義最大概似估計量
Maximum likelihood estimation for a shape-restricted regression model by sieve of Bernstein polynomials
指導教授: 趙一峰
I-feng Chao
張憶壽
I-shou Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 100
語文別: 英文
論文頁數: 68
外文關鍵詞: Bernstein polynomials, Area under the curve, rate of convergence, shape -restricted regression, sieve maximum likelihood estimate., empirical process
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們藉由伯氏多項式的次方和係數來對一個回歸函數定義最大概似估計量。如果我們已知回歸函數滿足某些形狀上的限制,例如單調性或凸性,則我們就可以透過對伯氏多項式的係數增加一樣的限制使得估計量達到相同的形狀限制。對於此類的最大概似估計量,當回歸函數連續時可建立出此估計量的收斂性;當回歸函數的導函數滿足利普希茨連續性時則可建立出此估計量的收斂速度。也是在一樣的條件下,估計量的積分也會弱收斂到回歸函數的積分。模擬分析展現出此方法在數值上的結果,除了對回歸函數的積分有良好的信賴區間的估計之外,此法亦表現得比貝氏方法及密度-回歸法更好(見Chang et al.(2007))。


    We consider maximum likelihood estimation (MLE) of a regression function using sieves defined by Bernstein polynomials, in terms of their order and coefficients. In case, that we know the regression function satisfies certain shape-restriction like monotonicity or convexity, we can impose corresponding restriction through the coefficients of the Bernstein polynomials in the sieves so that the estimate also satisfies the desired shape-restriction. For sieve MLE of this type, we establish its consistency when the regression function is continuous and its rate of convergence when its derivative satisfies Lipschitz condition. Under the same condition, we also show that the integral of the estimate converges weakly to that of the regression function at rate of root n. Simulation studies are presented to evaluate its numerical performance. In addition to excellent confidence interval estimates of area under the regression function, sieve MLE performs better than the Bayesian method based on Bernstein polynomials and density-regression method, reported in Chang et al. (2007).

    中文提要……………………………………………………………………………….i 英文提要………………………………………………………………………………ii 誌謝…………………………………………………………………………………...iii Contents……………………………………………………………………………...iv List of figures……………………………...……………………………....………….v List of tables…………………………………………………………………….……vi Explanation of symbols..............................................................................................vii 1. Introduction.……………………………………………………………………….1 1.1. Motivations…………………………………………………..…………………..1 1.2. Main results………………………………………………..……………………..3 2. Consistency. …………………………………………………..……………………8 3. Rate of convergence. ……………………………………………………………..16 4. Normality with known .………………………………...……………………20 5. Normality with unknown .…………………………………………………...26 6. Shape-restriction regression and simulation studies.…...……………....……...34 6.1 Area under the regression function.………………………………….....……...35 6.2 Performance comparison.…………………………………………............……38 6.3 Algorithm.……………………..……………………………………….......……39 7. Discussion.…………………………………………………...……………………41 References. …………………………………………………...………………....…..43 Appendix. ……………………………………………………...……………………45 Appendix 1. ………………………………….………………...………………....…45 Appendix 2. ……………………………………….…………………….......………45 Appendix 3. ………………………………………………….......................……….47 Appendix 4. …………………………………………………...……………....…….52

    [1] Altshuler, B (1981). Modeling of dose-response relationships. Scandinavian Journal of statisticsEnviron. Healt Perspect. 42 23-27.
    [2] Birke, M. and Dette, H. (2007). Estimating a convex function in nonparametric regression. Scandinavian Journal of statistics. 34 384-404.
    [3] Chang, I. S., Chien, L. C., Hsiung, C. A., Wen, C. C. and Wu, Y. J. (2007). Shape restricted regression with random Bernstein polynomials. Complex Datasets and Inverse Problems: Tomography, Networks and Beyond. 54 187–202.
    [4] Chang, I. S., Hsiung, C. A., Wu, Y. J. and Yang, C. C. (2005). Bayesian survival analysis using Bernstein polynomials. Scand. J. Statist. 32 447–466.
    [5] Chak, P. M., Madras, N. and Smith, B. (2005). Semi-nonparametric estimation with Bernstein polynomials. Economics Letters. 89 153-156.
    [6] Chien, L. C., Chang, I. S., Jiang, S. S., Gupta, P. K., Wen, C. C., Wu, Y. J. and Hsiung, C. A. (2009). Profiling time course expression of gene-virus: An illustration of Bayesian inference under shape restriction. Annals of Applied Statistics. 3 1542-1565.
    [7] Curtis, S. M. and Ghosh, S. K. (2011). A variable selection approach to monotonic regression with Bernstein polynomials. Journal of Applied Statistics. 38(5) 961-976.
    [8] Dette, H., Neumeyer, N. and Pilz, K. F. (2006). A simple nonparametric estimator of a monotone regression function. Bernoulli 12 469–490.
    [9] Dette, H. and Pilz, K. F. (2006). A comparative study of monotone nonparametric kernel estimates. J. Stat. Comput. Simul. 76 41–56.
    [10] Ganllant, A. R. and Golub, G. H. (1984). Imposing curvature restrictions on flexible functional forms. Journal of Econometrics. 26 295-322.
    [11] Hall, P. and Huang, L. S. (2001). Nonparametric kernel regression subject to monotonicity constraints. Ann. Statist. 29 624–647.
    [12] He, X. and Shi, P. (1998). Monotone B-spline smoothing. Journal of the American Statistical Association. 93(442) 643-650.
    [13] Hildreth, C. (1954). Point estimate of ordinates of concave functions. Journal of the American Statistical Association. 49 598–619.
    [14] Kosorok, Michail R. (2008). Introduce Empirical Processes and Semiparametric Inference. Springer.
    [15] Lorentz, G. G. (1986). Bernstein Polynomials. Chelsea, New York.
    [16] Mammen, E., Marron, J. S., Turlach, B. A. and Wand, M. P. (2001). A general projection framework for constrained smoothing. Statistical Science. 16 232–248.
    [17] Meyer, M. C. (2008). Inference using shape-restricted regression splines. The Annals of Applied Statistics. 2(3) 1013-1033.
    [18] Osman, M and Ghosh, S. K. (2012). Nonparametric regression models for right-censored data using Bernstein polynomials. Computational Statistics and Data Analysis. 56(3) 559-573.
    [19] Petrone, S. (1999). Random Bernstein polynomials. Scand. J. Statist. 26 373–393.
    [20] Petrone, S. and Wasserman, L. (2002). Consistency of Bernstein polynomial posteriors. J. R. Stat. Soc. Ser. B 64 79–100.
    [21] Ramsay, J. O. (1988). Monotone regression splines in action (with discussion). Statistical Science. 3 425-461.
    [22] Rudin, W. (1976). Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, New York.
    [23] Shen, X. (1997). On methods of sieves and penalization. Ann. Statist. 25 2555-2591.
    [24] Terrell, D (1996). Incorporating monotonicity and concavity conditions in flexible functional forms. Journal of Applied Econometrics. 11 179-914.
    [25] Van Der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Process. Springer, New York.
    [26] Van Der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.
    [27] Wang, J. and Ghosh, S.K. (2012). Shape restricted nonparametric regression with Bernstein polynomials. Computational Statistics and Data Analysis. 56(9) 2729-2741.
    [28] Wang, L., Li, H. and Huang, J. Z. (2008). Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. Journal of the American Statistical Association. 103(484) 1556-1569.
    [29] Wong, W. H. and Shen, X. (1994). Convergence rate of sieve estimates. Ann.Statist. 22 580-615.
    [30] Wong, W. H. and Shen, X. (1995). Probability inequalities for likelihood ratios and convergence rates of sieve MLEs. Ann.Statist. 23 339-362.
    [31] Zeise, L., Wilson, R. and Crouch, E. A. C. (1986). Dose-response relationships for carcinogens: A review. Environ. Health Perspect. 73 259-308.

    QR CODE
    :::