| 研究生: |
張恩維 En-Wei Chang |
|---|---|
| 論文名稱: |
以超級電容為儲能元件之內藏式永磁同步馬達控制 A Supercapacitor Based IPMSM drive using intelligent control |
| 指導教授: |
林法正
Faa-Jeng Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 內藏式永磁同步馬達 、超級電容 、切比雪夫模糊類神經網路 、城市輕軌車 |
| 外文關鍵詞: | Light rail vehicle |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,開發了一種基於超級電容的內藏式永磁同步馬達驅動,以模擬城市輕軌車輛的運行,包括特定速度曲線的速度追隨和超級電容的充電。在基於超級電容的內藏式永磁同步馬達驅動中,設計了用於模擬輕軌車輛速度控制的驅動模式和用於超級電容充電的充電模式。在驅動模式下,開發了磁場導向控制內藏式永磁同步馬達驅動系統來模擬輕軌車輛的速度控制。在充電模式下,為超級電容的充電開發了恆流恆壓充電策略。此外,以上兩種模式使用相同的變頻器和坐標軸轉換以降低設計複雜度。而為了測試超級電容的性能,使用特定的測試行駛週期來獲得仿真輕軌車輛的速度命令。設計目標是對超級電容進行快速充電,使其能夠為模擬的輕軌車輛提供足夠的能量,以運行完整的測試行駛週期。另外,為提高仿真輕軌車輛暫態速度響應的控制性能,提出了一種切比雪夫模糊類神經網絡速度控制器,並詳細推導了所提出的切比雪夫模糊類神經網路的網絡架構,線上學習法則和收斂性分析。最後,展示一些實驗結果,以證明所開發之針對超級電容的恆流恆壓充電策略以及所提出的切比雪夫模糊類神經網路速度控制器對於仿真輕軌車輛的有效性。
A supercapacitor (SC) based interior permanent magnet synchronous motor (IPMSM) drive is developed in this study to emulate the operation of an urban light rail vehicle (LRV) including the speed tracking of a specific velocity profile and the charging of the SC. In the SC based IPMSM drive, the motoring mode to emulate the LRV speed tracking control and the charging mode for the charging of the SC are both designed. In the motoring mode, a field-oriented controlled (FOC) IPMSM drive system is developed to emulate the speed control of a LRV. In the charging mode, the constant current and constant voltage (CC-CV) charging strategy is developed for the charging of the SC. Moreover, the above two modes use the same inverter and coordinate transformations to reduce the design complexity. Furthermore, in order to test the performance of SC, the speed command of the emulated LRV is obtained using a specific testing driving cycle. The design objective is a quick charge of SC being able to provide enough energy for the emulated LRV to operate a full testing driving cycle. In addition, to improve the control performance of the transient speed of the emulated LRV, a Chebyshev fuzzy neural network (CheFNN) speed controller is proposed. The network structure, online learning algorithm and the convergence analysis of the proposed CheFNN are derived in detail. Finally, some experimental results are given to demonstrate the effectiveness of the developed CC-CV charging strategy for the SC and the proposed CheFNN speed controller for the emulated LRV.
[1] P. Pillay, and R. Krishnan, “Application Characteristics of Permanent Magnet Synchronous and Brushless dc Motors for Servo Drives,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 986-996, Sep./Oct. 1991.
[2] D. B. W. Abeywardana, B. Hredzak, and V. G. Agelidis, “Single-phase grid-connected LiFePO4 battery–supercapacitor hybrid energy storage system with interleaved boost inverter,” IEEE Trans. Power Electron.,vol. 30, no. 10, pp. 5591-5604, Oct. 2015
[3] A. A. Mamun, Z. Liu, D. M. Rizzo, and S. Onori, ‘‘An integrated design and control optimization framework for hybrid military vehicle using lithium-ion battery and supercapacitor as energy storage devices,’’ IEEE Trans. Transp. Electrific., vol. 5, no. 1, pp. 239–251, Mar. 2019.
[4] A. Burke, and H. Zhao, "Present and future applications of supercapacitors in electric and hybrid vehicles," 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, 2015, pp. 1-5.
[5] J. Zhao, Y. Gao, and A. F. Burke, “Performance testing of supercapacitors: important issues and uncertainties,” Journal of Power Sources, vol. 363, pp. 327-340, Sep, 2017.
[6] D. Xu, L. Zhang, B. Wang, and G. Ma, “Modeling of supercapacitor behavior with an improved two-branch equivalent circuit,” IEEE Access, vol. 7, pp. 26379-26390, 2019.
[7] L. Mir, I. Etxeberria-Otadui, I. P. de Arenaza, I. Sarasola, and T. Nieva, “A supercapacitor based light rail vehicle: system design and operations modes,” 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009, pp. 1632-1639.
[8] R. Barrero, X. Tackoen, and J. Van Mierlo, “Analysis and configuration of supercapacitor based energy storage system on-board light rail vehicles,” 2008 13th International Power Electronics and Motion Control Conference, Poznan, 2008, pp. 1512-1517.
[9] N. Ghavihaa, J. Campilloa, M. Bohlinb, and E. Dahlquista, “Review of application of energy storage devices in railway transportation,” Energy Procedia, vol. 105, pp. 4561 – 4568, 2017.
[10] Z. Yang, Z. Yang, H. Xia, F. Lin, F. Zhu, “Supercapacitor state based control and optimization for multiple energy storage devices considering current balance in urban rail transit,” Energies, vol. 10, no. 520, Apr. 2017.
[11] P. V. Radu, A. Szelag, and M. Steczek, “On-board energy storage devices with Supercapacitors for metro trains— case study analysis of application effectiveness,” Energies, vol. 12, no. 1291, Apr, 2019
[12] Z. Zou, J. Cao, B. Cao, and W. Chen, “Evaluation strategy of regenerative braking energy for supercapacitor vehicle,” ISA Transactions, vol. 55, pp. 234-240, Mar, 2015.
[13] A. Adib and R. Dhaouadi, “Modeling and analysis of a regenerative braking system with a battery-supercapacitor energy storage,” 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, 2017, pp. 1-6.
[14] M. Khodaparastan, A. A. Mohamed, and W. Brandauer,“Recuperation of regenerative braking energy in electric rail transit systems,”IEEE Trans. Intel. Transport. Sys., vol. 20, no. 8, Aug. 2019, pp. 2831-2847.
[15] D. M. Sahoo and S. Chakraverty, “Functional link neural network learning for response prediction of tall shear buildings with respect to earthquake data,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 1, pp. 1–10, Jan. 2018.
[16] B. Y. Vyas, B. Das, and R. P. Maheshwari, “Improved fault classification in series compensated transmission line: Comparative evaluation of chebyshev neural network training algorithms,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 8, pp. 1631–1642, Aug. 2016.
[17] L. Jin, Z. Huang, Y. Li, Z. Sun, H. Li, and J. Zhang, ‘‘On modified multioutput Chebyshev-polynomial feed-forward neural network for pattern classification of wine regions,’’ IEEE Access, vol. 7, pp. 1973–1980, 2019.
[18] S. Hou, J. Fei, C. Chen, and Y. Chu, “Finite-time adaptive fuzzy-neural network control of active power filter,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 10298–10313, Oct. 2019.
[19] F. J. Lin, M. S. Huang, S. G. Chen, C. W. Hsu, and C. H. Liang “Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7465–7479, Jul. 2020.
[20] 俞韋安,「應用於內藏式永磁同步馬達之智慧型最佳伺服頻寬調整及慣量估測」,中央大學電機工程系,碩士論文,民國107年7月。
[21] Texas Instruments,TMS320F28335 datasheet.
[22] MCP4922 datasheet.
[23] 石承民,「結合虛擬慣量併網型微電網之智慧型控制」,中央大學電機工程系,碩士論文,民國108年7月。
[24] 陳家銘,「以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國102年6月。
[25] D. Hanselman, Brushless permanent magnet motor design, The Writer’s Collective, USA , 2003.
[26] 瑞智精密股份有限公司, http://www.rechi.com.
[27] 劉昌煥,「交流電機控制」,東華書局,民國92年。
[28] 高子胤,「以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國100年7月。
[29] S. Adrian and R. Gallay, “Properties and applications of supercapacitors from the state-of-the-art to future trends,” PCIM Conference, Nuremberg, 2000.
[30] C. Y. Hui, C. W. Kan, C. L. Mak and K. H . Chau, “Flexible Energy Storage System—An Introductory Review of Textile-Based Flexible Supercapacitors,” Journal of Process., vol 7, Dec. 2019.
[31] U. Gulzar, S. Goriparti, E. Miele, T. Li, G. Maidecchi, A. Toma, F. D. Angelis, C. Capiglia and R. P. Zaccaria, “Next-generation textiles: from embeddedsupercapacitors to lithium ion batteries,” Journal of Materials Chemistry A., vol 4. pp.16771-16800, Sep, 2016.
[32] J. Ding, W. Hu, E. Paek and D. Mitlin, “Review of hybrid ion capacitors: from aqueous to lithium to sodium,” Journal of Chemical Reviews., vol 118, no. 14, pp. 6457-6498, Jun, 2018.
[33] J. Libich, J. Maca, J. Vondrak, O. Cech and M. Sedlarikova, “Supercapacitors: Properties and applications,” Journal of Energy Storage., vol 17, pp. 224-227, Jun, 2018.
[34] P. Shen, C. Wang, S. Jiang, X. Sun, and J. Zhang, “Supercapacitors’ applications,” in Electrochemical Energy: Advanced Materials and Technologies, 1st ed. Boca Raton, Florida, USA: CRC Press, 2017, pp. 479-491.
[35] F. J. Lin, M. S. Huang, S. G. Chen, C. W. Hsu, and C. H. Liang “Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7465–7479, Jul. 2020.
[36] F. J. Lin, Y. C. Hung, J. C. Hwang, I. P. Chang, and M. T. Tsai, “Digital signal processor-based probabilistic fuzzy neural network control of in-wheel motor drive for light electric vehicle,” IET Elec. Power Appl., vol. 6, no. 2, pp. 47-61, 2012.
[37] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai and C. H. Kuan, “DSP-based Probabilistic Fuzzy Neural Network Control for Li-ion Battery Charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782-3794, 2012.
[38] F. J. Lin, S. G. Chen, and C. W. Hsu, “Intelligent backstepping control using recurrent feature selection fuzzy neural network for synchronous reluctance motor position servo drive system,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 413–427, Mar. 2019.
[39] F. J. Lin, Y. T. Liu, and W. A. Yu, “Power Perturbation Based MTPA with Intelligent Speed Controller for IPMSM Drive System,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3677-3687, 2018.