跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅盛耀
Sheng-yao Lo
論文名稱: 生產存貨系統在機器隨機故障條件下求損耗性商品之最佳生產策略
An optimal production policy for production-inventory system of deteriorating items subject to random machine breakdown
指導教授: 葉英傑
Ying-chieh Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 100
語文別: 英文
論文頁數: 46
中文關鍵詞: 服務水準限制式生產存貨系統馬可夫鏈
外文關鍵詞: production-inventory system, Markov Chain, service level constraint
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的存貨模型有著許多的限制,使其和現實情況並非吻合,在現實的情況下,大多數的存貨在持有過程中,存貨會隨著時間開始發生變質然而在生產的過程當中機器可能會故障。
    在我們的生產存貨系統中,考慮到損耗性產品以及機器會隨機故障並服從指數分配,而當我們的機器故障時,生產動作會停止,立刻進行維修,維修時間為一固定的期間。我們同時也用馬可夫鏈來計算出期望成本和服務水準限制式,利用給定固定服務水準最佳化此生產系統的最大存量以及安全存量,來達到期望成本最小化,期望成本包含了有設置成本、機器的維修成本、持有存貨成本、損耗產品成本和損失銷售成本。


    The traditional inventory model with too many assumptions and limitations, so that it and real world situation are not consistent. Under realistic conditions, the inventory item may be deteriorating and the production machine may breakdown.
    In this study, considers the product can deteriorate on constant rate and random machine breakdowns follow an exponential distributes. When machine breakdown, the production run will stop and immediately repair for a fixed period of time. We model the production-inventory system as a Markov Chain to formulate the expected total cost, incorporating a service-level constraint on the probability of a stock-out. The objective is to approximation the maximum inventory level and buffer stock that minimizes the expected total cost consisting of setup, corrective maintenance, holding, deterioration, and lost sales costs under conditions of continuous review, deterministic demand, and no shortages.

    摘要 i Abstract ii Contents iii List of Tables iv List of Figures v Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Objective 2 1.3 Research Framework 3 Chapter 2 Literature Review 4 2.1 Service level Constraints 4 2.2 Deterioration Item 5 2.3 Machine Breakdown 5 Chapter3 The Model 7 3.1 Model Assumption 7 3.2 Model Description 9 3.3 Model Derivation 13 3.3.1 Expected average inventory 13 3.3.2 Expected number of deterioration 17 3.3.3 Lost sales 19 3.3.4 Total cost 21 3.3.5 Service Level Constraints 25 Chapter4 Numerical Analysis 27 4.1 Numerical Example 27 4.2 Sensitive Analysis 29 4.2.1 Repair time R 29 4.2.2 Time to breakdown μ 32 Chapter 5 Conclusion and Future Research 35 5.1 Conclusion 35 5.2 Future Research 35 Appendix 37 References 38

    1. Abboud, N.E., “A discrete-time Markov production-inventory model with machine breakdowns,” Computers & Industrial Engineering,Vol. 39,No. 1-2, 2001.
    2. Abboud, N.E., “A simple approximation of the EMQ model with Poisson machine failures,” Production Planning&Control,Vol. 8,No. 4, 1997.
    3. Chen, F.K. and Krass, D., “Inventory models with minimal service level constraints,” European Journal of Operational Research, Vol. 134, No.1, 2001.
    4. Chung, K., “Bounds for production lot sizing with machine breakdown,” Computers & Industrial Engineering,Vol. 32,No. 1, 1997.
    5. Elsayed, E.A. and Teresi, C., “Analysis of inventory systems with deteriorating items,” International Journal of Production Research,Vol. 21, No. 4, 1983.
    6. Gary, C. L. and Dah-Chuan, G., “On a production-inventory system of deteriorating items subject to random machine breakdowns with a fixed repair time,” Mathematical and Computer Modelling,Vol. 43, 2006.
    7. Groenevelt, H., Pintelon, L., Seidmann, A., “Production batching with machine breakdowns and safety stocks,” Operations Research,Vol. 40, No. 5, 1992.
    8. Groenvelt, H., Pintelon, L. and Seidmann, A., “Production lot sizing with machine breakdowns,” Management Science,Vol. 38, No.1, 1992.
    9. Hopp, J.W., Pati, N. and Jones, C. P., “Optimal inventory control in a production flow system with failures,” International journal of production,Vol. 27, No. 8, 1989.
    10. Hwang, H. and Hwang, H.S., “Optimal issuing policy in production lot size system for items with Weibull deterioration,” International Journal of Production Research,Vol. 20, No. 1, 1982.
    11. James, H. B. and Jin, Y. T., “Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraint,”Management ScienceVol. 34, No. 9,1988.
    12. Kang, S. and Kim, I., “A study on the price and production level of the deteriorating inventory system,”International Journal of Production Research, Vol.21, No. 6, 1983.
    13. Kuhn, H., “A dynamic lot sizing model with exponential machine breakdowns,”European Journal of Operational Research,Vol. 100, No. 3, 1997.
    14. Lee, S.D. and Rung, J.M., “Production lot sizing in failure prone two-stage serial systems,” European Journal of Operational Research,Vol. 123,No. 1, 2000.
    15. Mak, K.L., “A production lot size inventory model for deteriorating items,” Computers & Industrial EngineeringVol. 6, No. 4, 1982.
    16. Misra, R.B., “Optimum production lot size model for a system with deteriorating inventory,” International Journal of Production Research,Vol. 13, No. 5, 1975.
    17. Morris, A. C., Paul, R. K. and Hau, L. L., “Service Constraint (s, S) Inventory System with Priority Demand Classes and Lost Sales,” Management ScienceVol. 34, No. 4, 1988.
    18. Park, K.S., “An integrated production-inventory model for decaying raw materials,” International Journal of Systems Science,Vol. 14, No. 7, 1983.
    19. Raafat, F., “Survey of literature on continuously deteriorating inventory models,”Journal of the Operational Research Society,Vol. 42,No. 1, 1991.
    20. Schneider, H. and Ringuest, J.L., “Power approximation for computing (s, S) policies using service level,” Management Science, Vol. 36, No. 7, 1990.
    21. Sridhar, B. and Michael,C. F., “Optimization of (s,S) Inventory Systems with Random Lead Times and a Service Level Constraint,” Management ScienceVol. 44, No. 12, 1997.

    QR CODE
    :::