跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉芸圻
Yun-Chi Liu
論文名稱: 具咪唑(imidazole)官能基硫醇分子於金(111)上之吸附及對電鍍銅的影響
指導教授: 姚學麟
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 93
中文關鍵詞: 穿隧式掃描電子顯微鏡咪唑衍生物金(111)
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這項研究中透過循環伏安法(CV)和掃描式穿隧電子顯微鏡(STM)於硫酸、過氯酸和鹽酸中研究了2-巰基-5-苯並咪唑磺酸(MBIS)與2-巰基苯并咪唑(MBI)吸附在金(111)上的空間結構,揭示了電位控制和分子濃度對吸附構型和表面排列的巨大影響。同時也探討了MBI分子和MBIS分子吸附在金(111)電極上對於電鍍銅的影響。
    首先,透過STM觀察MBIS分子和MBI分子可形成有序分子膜,其單位晶格分別為(3√3 × 3√3)和(√3 × 5)。 MBIS分子和MBI分子的覆蓋度分別是0.11和0.23。MBIS分子比MBI分子更鬆散地組裝在金(111)上,這是由於磺酸根基團的排斥力,使分子間的相互作用更大。
    其次,MBIS分子和MBI分子在硫酸和過氯酸中形成相同的有序結構,但在鹽酸中卻呈現無序。這種現象表明,陰離子深刻影響著MBIS分子和MBI分子的吸附。在另一項實驗結果中發現,當電解質中MBIS分子的濃度逐漸增加,MBIS分子的結構從有序變為無序。相反地,MBI分子結構並不受影響,在越來越高的分子濃度中(√3 × 5)的結構依然存在。
    最後,MBIS分子和MBI分子都在低分子濃度下加速了銅在金(111)上的電沉積,但在高濃度下卻減緩了沉積速度。


    In this study, the spatial structures of 2-Mercapto-5-benzimidazolesulfonic acid (MBIS) and 2-Benzimidazolethiol (MBI) adsorbed on Au(111) have been investigated by cyclic voltammetry (CV) and scanning tunneling microscopy (STM) in sulfuric, perchloric and hydrochloric acids, revealing the immense effects of potential controlled and molecular concentration on the adsorption configuration and surface arrangement. The effects of MBI and MBIS adsorbed on a Au(111) electrode on copper electroplating are exaamined.
    First, MBIS and MBI form order molecular films, whose unit cells are (3√3 × 3√3) and (√3 × 5), as characterized by STM. The coverage of MBIS and MBI is 0.11 and 0.23. MBIS is more loosely packed on Au(111) than MBI, suggesting a greater repulsive intermolecular interaction due to the sulfonate group.
    Secondly, both MBIS and MBI form the same ordered structure in sulfuric and perchloric acids, but they are disordered in hydrochloric acid. This phenomenon indicates a profound effect of anion is the adsorption of MBIS and MBI. In one experiment, where the concentration of MBIS is gradually increased in the electrolyte, the MBIS structure changes from ordered to disordered. In contrast, but the MBI structure is not affect and the structure of (√3 × 5) stays with increasingly higher concentration.
    Finally, both MBIS and MBI accelerate the electrodeposition of copper on Au(111) at low molecular concentration, but slow down at high concentration.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1–1 硫醇分子自組裝分子膜 1 1–1–1 有機硫醇分子自組裝單層膜於金(111)上 1 1–1–2 含芳香環硫醇分子研究 2 1–2 超級填孔(Super–filling) 5 1–2–1 有機硫醇添加劑 5 1–2–2 相關研究 6 1–3 研究動機 6 第二章 實驗部分 7 2–1 實驗藥品 7 2–2 實驗耗材 8 2–2–1 氣體 8 2–2–2 金屬線材 8 2–3 儀器設備 9 2–3–1 循環伏安儀(Cyclic Voltammetry, CV) 9 2–3–2 掃描式穿隧電子顯微鏡(Scanning Tunneling Microscope, STM) 9 2–4 實驗步驟 10 2–4–1 CV電極製備與實驗操作步驟 10 2–4–2 STM探針的製備 11 2–4–3 STM電極製備與實驗操作步驟 11 第三章 MBIS於金(111)電極吸附的結果與討論 14 3–1 電位控制對於MBIS分子吸附結構之影響 14 3–1–1 添加1μM MBIS於0.1M硫酸溶液中之CV圖 14 3–1–2 電位控制對於MBIS分子結構的影響及可逆性 16 3–2 不同溶液對MBIS分子結構之影響 27 3–2–1 添加1𝛍M MBIS於0.1M過氯酸溶液中之CV圖及STM圖 27 3–2–2 添加1𝛍M MBIS於0.1M鹽酸溶液中之CV及STM圖 32 3-2-3 添加1mM MBIS於0.1M過氯酸鉀溶液中之CV及STM 36 3–3 濃度變化對MBIS分子結構之影響 39 3–3–1 添加100mM MBIS於0.1M硫酸溶液中之STM及CV圖 39 3–4 第三章小結 42 第四章 MBI於金(111)電極吸附的結果與討論 44 4–1 電位控制對於MBI分子吸附結構之影響 44 4–1–1 添加1𝛍M MBI於0.1M硫酸溶液中之CV圖及STM圖 44 4–1–2 電位控制對於MBI分子結構的影響及可逆性 51 4–2 改變PH值對MBI分子結構之影響 56 4–2–1 添加1 μM MBI於0.1M過氯酸溶液中之CV圖及STM圖 56 4–2–2 添加1 μM MBI於0.1M過氯酸鉀溶液中之CV及STM圖 60 4–3 濃度變化對MBI分子結構之影響 63 4–3–1 添加100mM MBI於0.1M過氯酸溶液中之STM及CV圖 63 4–4 第四章小結 66 第五章 MBIS∕MBI對電沉積銅之影響 68 5–1 添加MBIS∕MBI分子電沉積銅之CV圖 68 5–1–1 添加不同濃度MBIS於0.1M硫酸銅溶液中之CV圖 68 5–1–2 添加不同濃度MBI於0.1M硫酸銅溶液中之CV圖 70 5–2 添加1 μM MBIS分子電沉積銅之STM圖 73 第六章 結論 76 第七章 參考文獻 77

    1. Vericat, C.; Vela, M.; Benitez, G.; Carro, P.; Salvarezza, R., Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chemical Society Reviews 2010, 39 (5), 1805-1834.
    2. Guesmi, H.; Luque, N. B.; Santos, E.; Tielens, F., Does the SH Bond Always Break after Adsorption of an Alkylthiol on Au (111)? 2017.
    3. Lérondel, G.; Kostcheev, S.; Plain, J., Nanofabrication for plasmonics. In Plasmonics, Springer: 2012; pp 269-316.
    4. Bigelow, W.; Pickett, D.; Zisman, W., Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science 1946, 1 (6), 513-538.
    5. Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 1983, 105 (13), 4481-4483.
    6. Poirier, G.; Tarlov, M.; Rushmeier, H., Two-dimensional liquid phase and the px. sqroot. 3 phase of alkanethiol self-assembled monolayers on Au (111). Langmuir 1994, 10 (10), 3383-3386.
    7. Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E., Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. Journal of the American Chemical Society 1987, 109 (12), 3559-3568.
    8. Edinger, K.; Gölzhäuser, A.; Demota, K.; Wöll, C.; Grunze, M., Formation of self-assembled monolayers of n-alkanethiols on gold: a scanning tunneling microscopy study on the modification of substrate morphology. Langmuir 1993, 9 (1), 4-8.
    9. Chaudhuri, A.; Jackson, D.; Lerotholi, T.; Jones, R. G.; Lee, T.-L.; Detlefs, B.; Woodruff, D., Structural investigation of Au (111)/butylthiolate adsorption phases. Physical Chemistry Chemical Physics 2010, 12 (13), 3229-3238.
    10. Peter, M.; Dan, C. S.; John T. Yates, Jr., Gold-Adatom-Mediated Bonding in Self-Assembled Short-Chain Alkanethiolate Species on the Au(111) Surface. Physical Review Letters 2006, 97 (14), 146103.
    11. Dhirani, A.-A.; Zehner, R. W.; Hsung, R. P.; Guyot-Sionnest, P.; Sita, L. R., Self-assembly of conjugated molecular rods: A high-resolution STM study. Journal of the American Chemical Society 1996, 118 (13), 3319-3320.
    12. Loglio, F.; Schweizer, M.; Kolb, D., In situ characterization of self-assembled butanethiol monolayers on Au (100) electrodes. Langmuir 2003, 19 (3), 830-834.
    13. Moffat, T. P.; Yang, L.-Y. O., Accelerator surface phase associated with superconformal Cu electrodeposition. Journal of The Electrochemical Society 2010, 157 (4), D228.
    14. Lee, C. H.; Bonevich, J. E.; Davies, J. E.; Moffat, T. P., Superconformal electrodeposition of Co and Co–Fe alloys using 2-Mercapto-5-benzimidazolesulfonic acid. Journal of The Electrochemical Society 2009, 156 (8), D301.
    15. Lee, C. H.; Bonevich, J. E.; Davies, J. E.; Moffat, T. P., Magnetic Materials for Three-Dimensional Damascene Metallization: Void-Free Electrodeposition of Ni and Ni70Fe30 Using 2-Mercapto-5-benzimidazolesulfonic Acid. Journal of The Electrochemical Society 2008, 155 (7), D499.
    16. Pensa, E.; Carro, P.; Rubert, A.; Benítez, G.; Vericat, C.; Salvarezza, R., Thiol with an Unusual Adsorption− Desorption Behavior: 6-Mercaptopurine on Au (111). Langmuir 2010, 26 (22), 17068-17074.
    17. Wöll, C.; Chiang, S.; Wilson, R.; Lippel, P., Determination of atom positions at stacking-fault dislocations on Au (111) by scanning tunneling microscopy. Physical Review B 1989, 39 (11), 7988.
    18. Ramírez, P.; Andreu, R.; Cuesta, Á.; Calzado, C. J.; Calvente, J. J., Determination of the potential of zero charge of Au (111) modified with thiol monolayers. Analytical chemistry 2007, 79 (17), 6473-6479.
    19. Lee, C. H.; Kim, A. R.; Koo, H.-C.; Kim, J. J., Effect of 2-Mercapto-5-benzimidazolesulfonic acid in superconformal Cu electroless deposition. Journal of the Electrochemical Society 2009, 156 (6), D207.

    QR CODE
    :::