跳到主要內容

簡易檢索 / 詳目顯示

研究生: 雲上哲
Shang-Che Yun
論文名稱: 離子慣性效應對救火管與磁鏡不穩定性之影響
指導教授: 郝玲妮
Lin-Ni Hau
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 94
語文別: 英文
論文頁數: 66
中文關鍵詞: 磁鏡不穩定性救火管不穩定性離子慣性效應
外文關鍵詞: mirror instability, fire-hose instability
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人造衛星觀測資料顯示在太空電漿環境中,無碰撞電漿通常存在壓力非均向的特性,其熱力狀態非絕熱也不是等溫。本文中我們採用一組能包含雙絕熱及等溫的雙重多向性能量定律,並且考慮離子慣性效應,包括霍爾電流與電子溫度非均向性,來研究波長接近離子慣性長度的線性磁流體波的性質及其所伴隨的救火管不穩定性與磁鏡不穩定性發生之條件。一般而言,當電子溫度非均向性為 時,救火管不穩定性會受到增強而磁鏡不穩定性會受到抑制;反之,當電子溫度非均向性為 時,其結果會相反。甚至,電子溫度非均向性會使得原本穩定的磁流體波產生救火管與磁鏡不穩定性。


    Satellite observations have revealed that the thermal pressure of collisionless plasmas usually exhibits the gyrotropic form with two distinct pressure components. Based on the double-polytropic magnetohydrodynamic (MHD) model, Hau and Sonnerup (1993) have found that the properties of MHD waves may greatly be modified by the pressure anisotropy. In this study, we extend the ideal double-polytropic MHD model to include the ion inertial terms arising from the Hall current as well the finite electron temperature for examining the properties of MHD waves. The dispersion relations are derived and the effects of the ion inertial terms on the fire-hose and mirror instabilities are examined. It is shown that for the electron temperature anisotropy of , the fire-hose instability is enhanced and the mirror instability is stabilized, but for the result is reverse. The originally stable MHD waves may even become unstable for sufficiently large electron temperature anisotropy.

    Chinese Abstract i English Abstract ii Contents iii List of Figures iv 1. Introduction 1 2. Basic Equations and Theory 4 2.1 Isotropic MHD Case 10 2.2 Isotropic Hall MHD Case 11 2.3 Anisotropic MHD Case 11 2.4 Anisotropic Hall MHD Case 13 2.4.1 Parallel Propagation 13 2.4.2 Perpendicular Propagation 16 2.4.3 Oblique Propagation 16 2.5 Anisotropic Hall MHD With Electron Temperature Anisotropy Case 17 2.5.1 Parallel Propagation 17 2.5.2 Oblique Propagation 19 3. Fire-hose And Mirror Instabilities 33 3.1 Fire-hose Instability 33 3.1.1 Ideal Double-polytropic MHD 33 3.1.2 Hall Current Effects 34 3.1.3 Electron Temperature Anisotropy Effects 35 3.2 Mirror Instability 37 3.2.1 Ideal Double-polytropic MHD 37 3.2.2 Hall Current Effects 37 3.2.3 Electron Temperature Anisotropy Effects 37 4. Summary 64 References 66

    Chew, G. F., M. L. Goldberger, and F. E. Low, The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions, Proc. Roy. Soc. London, Ser A, 236, 112, 1956.
    Hau, L.-N., and B. U. Ö. Sonnerup, On slow mode waves in anisotropic plasmas, Geophys. Res. Lett., 20, 1763-1766, 1993.
    Pantellini, F. G. E., and S. J. Schwartz, Electron temperature effects in the linear proton mirror instability, J. Geophys. Res., 100, 3539, 1995.
    Pokhotelov, O. A., M. A. Balikhin, H. St-C.K. Alleyne, and O. G. Onishchenko, Mirror instability with finite electron temperature effects, J. Geophys. Res., 105, 2393, 2000.
    Wang, B.-J., and L.-N. Hau, MHD aspects of fire-hose type instabilities, J. Geophys. Res., 108, 1463, 2003.
    陳予泰,霍爾電流對壓力非均向磁性流體波傳播之效應,中央大學太空科學研究所碩士論文,1995。

    QR CODE
    :::