| 研究生: |
楊景欽 Ching-Chin Yang |
|---|---|
| 論文名稱: |
智慧監控平台與其前景切割硬體架構設計 Intelligent Surveillance Platform and Hardware Architecture of Foreground Detection |
| 指導教授: |
蔡宗漢
Tsung-Han Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 背景模型 、物件追蹤 、閉塞情形 、監控系統 |
| 外文關鍵詞: | Background Model, Object Tracking, Occlusion, Surveillance System |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
計算機視覺領域中的多物體檢測和遮擋情形的跟踪是一個重要的研究課題,但大多數物體跟踪算法太過於複雜,並不適用於即時的跟踪系統。本文提出了一種擁有快速的處理速度的多物件跟踪方法,並且能夠有效的處理遮避情形。該方法主要改進了前景檢測系統,以獲得低複雜度和高質量的成果,並與其他背景減除技術進行比較,實驗圖表明,這種方法在計算速度和檢測率方面優於其他前景檢測方法。為了有效率的跟踪運動物件,我們使用物件標記的方法來消除雜訊和將運動物件進行分組。另外,還通過使用對象的軌跡預測和邊緣分析,提出了遮擋狀態下的三種處理情況:交錯情況,分離情況和單一標籤下有多物件的情況。利用這些方法,我們可以實現一套能穩定追蹤多個物件的系統,並且不用使用到物件的顏色資訊和外觀模型。最後,我們對前景切割演算法進行硬體架構的實現,在TSMC 90nm的製程下擁有150 MHz操作頻率,在這頻率下,能夠即時處理1080p的影像資訊,而我們也在FPGA (Altera Sockit)上進行驗證,擁有50MHz的操作速率,並且將處理結果透過VGA顯示在螢幕上。
Multi-object detection and occlusion tracking in the computer vision field is an important research topic, but most objects tracking algorithms are too complex and not practical for the real-time tracking system. This paper proposes a real-time occlusion-adaptive tracking method approach to resolving this issue. This method mainly improves the foreground detection to get low-complexity and high-quality effect. It also compares with other background subtraction techniques. Experimental figures show this method outperforms other foreground detection methods in terms of both computation speed and detection rate. For tracking moving objects, the proposed method uses the labeling to eliminate noises and group moving objects. In addition, it also proposed the processing cases of occlusions, including staggered case, separation case and multi-object in single label case, by using object's trajectory and edge. With this method, we can track the moving objects in the successive frame without color cues and appearance model in the real-time surveillance system. Finally, we implemented the hardware architecture of the foreground detection algorithm with a 150 MHz operating frequency at TSMC's 90 nm process. In this operating frequency, we can process 1080p image with 30 frames per second. And we are also working on the FPGA (Altera Sockit) for verifying. The results will be displayed on the screen through the VGA in 50MHz operating rate.
[1] K. Smith, P. Quelhas, and D. Gatica-Perez, “Detecting abandoned luggage items in a public space,” in PETS, 2006, pp. 75–82.
[2] Wahyono, A. Filonenko, and K.-H. Jo, “Detecting abandoned objects in crowded scenes of surveillance videos using adaptive dual background model,” in Proc. HSI, June 2015, pp. 224–227.
[3] A. Magadán, I. Martin, C. Conde and E. Cabello, “Evaluation of Keypoint Descriptors Applied in the Pedestrian Detection in Low Quality Images”, IEEE Latin America Transactions, Vol. 14, No. 3, March 2016, pp.1401-1407.
[4] M. Elhamod and M. Levine. “Automated real-time detection of potentiall suspicious behavior in public transport areas”. Intelligent Transportation Systems, IEEE Transactions on, Vol .14, No. 2, June 2013,pp. 688-699.
[5] C.-J. Yang, T. Chou, F.-A. Chang, S.-Y. Chang, J.-I. Guo, “A smart surveillance system with multiple people detection, tracking, and behavior analysis”, VLSI Design, Automation and Test (VLSI-DAT), 2016 International Symposium on, April 2016.
[6] W. Lao, J. Han and P.H.N. De With, “Automatic video-based human motion analyzer for consumer surveillance system,” IEEE Transactions on Consumer Electronics, vol. 55, pp. 591-598, 2009.
[7] Aravinda S. Rao, J. Gubbi, S. Marusic, and M. Palaniswami, “Crowd Event Detection on Optical Flow Manifolds”, IEEE Transactions on Cybernetics, Vol. 46, No. 7, July 2016,pp. 1524-1537.
[8] T. Wang and H. Snoussi, “Detection of Abnormal Visual Events via Global Optical Flow Orientation Histogram,” IEEE Trans. Information Forensics and Security, vol. 9, no. 6, 2014, pp. 988–998.
[9] Chaohui, Z., Xiaohui, D., Shuoyu, X., Zheng, S., Min, L., “An improved moving object detection algorithm based on frame difference and edge detection.” Proceedings of the Fourth International Conference on Image and Graphics, Chengdu, 2007, pp. 519–523
[10] Sandeep S. Sengar, S. Mukhopadhyay, “A novel method for moving object detection based on block based frame differencing,” International Conference on Recent Advances in Information Technology (RAIT), 2016.
[11] A. Sobral, A. Vacavant, “A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos”, Comput. Vis. Image Underst, 2014.
[12] T. Bouwmans, “Traditional and recent aproaches in background modeling for foreground detection:An overview”, Computer Science Review, 11–12: 31–66, 2014.
[13] Y. Tian, A. Senior, M. Lu, “Robust and efficient foreground analysis in complex surveillance videos”, Mach. Vis. Appl. 2012.
[14] Z. Zivkovic, F. van der Heijden, "Efficient adaptive density estimation per image pixel for the task of background subtraction", Pattern Recognit. Lett., vol. 27, pp. 773-780, May 2006.
[15] T.-H. Tsai, D.-Z. Peng, C.-Y. Lin and W.-T. She, “A Low Cost Foreground Object Detection Architecture Design with Multi-model Background Maintenance Algorithm,” International Journal of Electrical Engineering (IJEE), vol. 16, no. 3, pp. 241-250, Jun. 2009.
[16] A. Elgammal, D. Harwood, L. Davis, "Non-Parametric Model for Background Subtraction", Proc. Sixth European Conf. Computer Vision, pp. 751-767, June 2000.
[17] Shao-Yi. Chien, Shyh-Yih Ma and Liang-Gee Chen, “Efficient Moving Object Segmentation Algorithm Using Background Registration Technique,” IEEE Trans. Circuits and Systems for Video Technology, vol. 12, No. 7, pp.577-586, 2002.
[18] O. Barnich and M. Van Droogenbroeck, “Vibe: A universal background subtraction algorithm for video sequences”, Image Processing, IEEE Transactions on, 20(6):1709-1724, june 2011.
[19] Shraddha V. Kothiya, Kinjal B. Mistree, ” A review on real time object tracking in video sequences,” Electrical, Electronics, Signals, Communication and Optimization (EESCO), 2015 International Conference on, pp. 1-4, 2015.
[20] N. Funk, "A Study of the Kalman Filter applied to Visual Tracking," University of Alberta, Project for CMPUT 652, 2003.
[21] I. Kim, M.-M. Khan, T.-WAwan, Y. Soh, "Multi-target tracking using color information," International Conference on information Computer Application, unpublished, ICICA 3'd, 2014.
[22] Y. Zhou, B. Hu, and J. Zhang, ”Occlusion detection and tracking method based on bayesian decision theory,” Lecture Notes in Computer Science, Advance in Image and Video Technology First Pacific Rim Symposium., 2006.
[23] Li Hou, Wanggen Wan, Kuan-Hui Lee, Jenq-Neng Hwang, G. Okopal, J. Pitton, “Deformable multiple-kernel based human tracking using a moving camera”, Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pp 2249-2253, April, 2015.
[24] Q. Zhu; H. Xiong; X. Jiang, ” Shape-oriented segmentation with graph matching corroboration for silhouette tracking,” IEEE Trans. Visual Communications and Image Processing (VCIP), pp. 1-6, 2012.
[25] W.Hu et al, “A Survey on Visual Surveillance of Object Motion and Behaviors”, IEEE Transactions on Systems, Man and Cybernetics - part C: Applications and reviews, Vol. 34, No.3.
[26] Thomas B. Moeslund et al,”A Survey of Advances in Vision Based Human Motion Capture and Analysis”, Computer Vision and Image Understanding, October 2006.
[27] H. Zhang and D. Xu, “Fusing Color and Texture Features for Background Model”, Third International Conference on Fuzzy Systems and Knowledge Discovery, 2006.
[28] M. Heikkila, M. Pietikainen, A texture-based method for modeling the background and detecting moving objects, IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (4) (2006) 657–662.
[29] A. Vacavant, T. Chateau, A. Wilhelm, L. Lequievre, “A benchmark dataset for foreground/background extraction”, in: Background Models Challenge (BMC) at Asian Conference on Computer Vision (ACCV), LNCS, vol. 7728, Springer, 2012, pp. 291–300.
[30] Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. Ishwar, “CDnet 2014: An expanded change detection benchmark dataset,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2014, pp. 387–394.
[31] PETS 2001 dataset, http://ftp.pets.rdg.ac.uk/pub/PETS2001/ .
[32] J. Ferryman and A. Shahrokni, “PETS 2009: Dataset and challenge,” in Proc. IEEE Int. Workshop Perform. Eval. Tracking Surveillance, 2009, pp. 1–6.
[33] Bloisi, D., Iocchi, L.: “Independent multimodal background subtraction.” Proceedings of the Third International Conference on Computational Modeling of Objects Presented in Images: Fundamentals, Methods and Applications, pp. 39–44 (2012)
[34] C. Stauffer, W.E.L. Grimson, “Adaptative background mixture models for a realtime tracking”, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 1999.
[35] J. Yao, J. marc Odobez, Multi-layer background subtraction based on color and texture, in: IEEE Computer Vision and Pattern Recognition Conference (CVPR), 2007.
[36] A. Manzanera J. Richefeu, "A new motion detection algorithm based on Sigma -Delta background estimation " Pattern Recognit. Lett. vol. 28 pp. 320-328 Feb. 2007.
[37] C. Wren, A. Azarbayejani, T. Darrell, A. Pentland, Pfinder: “real-time tracking of the human body”, IEEE Trans. Pattern Anal. Mach. Intell. 19 (7) (1997) 780–785.