| 研究生: |
王聖翔 Sheng-Hsiang Wang |
|---|---|
| 論文名稱: |
應用電洞加速層低電流密度下增益Micro-LED之內部量子效率 Improvement of the internal quantum efficiency of III-Nitride blue Micro-LEDs by the hole accelerator at low current density |
| 指導教授: |
韋安琪
An-Chi Wei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 微發光二極體 、電洞加速層 、量子壁壘材料 、提升內部量子效率 |
| 外文關鍵詞: | μ-LEDs, hole accelerator, Quantum barrier material, Improve quantum efficiency |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著微型發光二極體尺寸的減小,磊晶過程中產生之缺陷變得更加嚴重。這些缺陷導致載流子產生表面復合,導致載子無法復合於主動層。為了增強電洞注入效果,此研究加入了各種電洞加速層(Hole Accelerator),此層提供額外動能使電洞穿過 p型電子阻擋層 (p-EBL),使更多電洞進入多重量子井(Multiple Quantum Wells )與電子復合,從而使微發光二極體之內部量子效率提升。本研究使用COMSOL商業多重物理量模擬軟體之半導體模組來模擬元件之特性。通過增添電洞加速層,藉由材料於異質接面造成之極化電場,使元件內電洞速度提升,防止它們被困在缺陷能級中。此外,研究不同量子壁壘(Quantum barrier)之材料以提高低電流密度下微發光二極體之內部量子效率。
As the size of micro light-emitting diodes (μ-LEDs) decreases, the defects generated during the epitaxial growth process become more severe. These defects lead to surface recombination of charge carriers, preventing their recombination within the active layer. In order to enhance hole injection efficiency, this study introduces various hole accelerators, which provide additional kinetic energy to the holes to traverse the p-type Electron Blocking Layer (p-EBL). This enables more holes to enter the Multiple Quantum Wells (MQWs) and recombine with electrons, thereby improving the internal quantum efficiency of the μ-LEDs. The commercial multiphysics simulation software COMSOL's semiconductor module is utilized to simulate the characteristics of the device. By incorporating hole accelerators, the polarization electric field induced at the heterojunction enhances the hole velocity within the device, preventing them from being trapped in defect energy levels. Additionally, different materials for the quantum barriers are studied to improve the internal quantum efficiency of the micro-LED at low current densities.
[1] Web page from : ledinside
https://www.ledinside.com.tw/news/20170110-33644.html
[2] Web page from : ledinside
https://www.ledinside.com.tw/news/20190107-35833.html
[3] Web page from : LEDinside
https://www.ledinside.cn/news/20220209-51664.html
[4] L. Li, C. Liu, Y. Su, J. Bai, J. Wu, Y. Han, Y. Hou, S. Qi, Y. Zhao, H. Ding, Y. Yan, L. Yin, P. Wang, Y. Luo and X. Sheng , “Heterogeneous Integration of Microscale GaN Light-Emitting Diodes and Their Electrical, Optical, and Thermal Characteristics on Flexible Substrates,” Advanced Materials Technologies,3, 1700239, 2018
[5] X. Jia, Y. Zhou, B. Liu, H. Lau, Z. Xie, R. Zhang and Y. Zheng, “A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications,” Materials Research Express, Express 6, 105915, 2019
[6] S. Lu, J. Li, K. Huang, G. Liu, Y. Zhou, D. Cai, R. Zang and J. Kang, “Designs of InGaN Micro-LED Structure for Improving Quantum Efficiency at Low Current Density,” Nanoscale Research Letters volume 16, 99, 2021
[7] L. Chang, Y. Yeh, S. Hang, K. Tian, J. Kou, W. Bi, Y. Zhang, Z. Zhang, Z. Liu and H. Kuo, “Alternative Strategy to Reduce Surface Recombination for InGaN/GaN Micro-light-Emitting Diodes—Thinning the Quantum Barriers to Manage the Current Spreading,” Nanoscale Research Letters, volume 15, 160, 2020
[8] M. Zhang, S. Hang, C. Chu, H. Shao, Y. Zhang, Y. Zhang, Y. Zhang, Q. Zheng, Q. Li and Z. Zhang, “A Buried High k Insulator for Suppressing the Surface Recombination for GaN-Based Micro-Light-Emitting Diodes,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 69, NO. 6, 2022
[9] Z. Zhang, W. Liu, S. Tan, Y. Ji, L. Wang, B. Zhu, Y. Zhang, S. Lu, X. Zhang, N. Hasanov, X. Sun and V. Demir, “A hole accelerator for InGaN/GaN light emitting diodes,” Appl. Phys. Lett, 105, 153503,2014
[10] Z. Zhang, Y. Zang, W. Bi, C. Geng, S. Xu, H. Demir and X. Sun, “On the hole accelerator for III-nitride light-emitting diodes,” Appl. Phys. Lett, 108, 151105, 2016
[11] M. Wong, C. Lee, D. Myers, D. Hwang, J. Kearns, T. Li, J. Speck, S. Nakamura and S. DenBaars, “Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation,” Appl. Phys. Express 12, 097004, 2019
[12] Web page from : StackExchange electrical engineering
https://electronics.stackexchange.com/questions/83657/e-k-diagram-in-case-of- semiconductors
[13] Web page from : Introduction to III and V semiconductors
https://scistore.colife.org.tw/management/Upload/dragon/20161211153312939_07_sund ay_20161211.pdf
[14] Donald A. Neamen, Fundamentals of Semiconductor Physics and Devices, 楊賜麟, McGraw-Hill, USA, 2005
[15] Y. Tawk, J. Costantine, S. Hemmady, G. Balakrishnan, K. Avery and C.Christodoulou, “Demonstration of a Cognitive Radio Front End Using an Optically Pumped Reconfigurable Antenna System (OPRAS),” IEEE Transactions on Antennas and Propagation, Volume: 60, Issue: 2, February 2012
[16] Web page from : WIKIPEDIA
https://en.wikipedia.org/wiki/P%E2%80%93n_junctio\n
[17] J. Park, D. Kim, S. Hwang, D. Meyaard, E. Schubert, Y. Han, J. Choi, J. Cho and J. Kim, “Enhanced overall efficiency of GaInN-based light-emittingdiodes with reduced efficiency droop by Al-compositiongraded AlGaN/GaN superlattice electron blocking layer,” Appl. Phys. Lett., 103, 061104, 2013
[18] H. Qin, T. Kuang, X. Luan, W. Li, J. Xiao, P. Zhang, D. Yang and G. Zhang, “Influence of Pressure on the Mechanical and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals,” Crystals, 8, 428, 2018
[19] C.M. Furqan, J. Ho and H. Kwok, “GaN thin film: Growth and Characterizations by Magnetron Sputtering,” Surfaces and Interfaces, 26, 101364, 2021
[20] V. DAVYDOV, A. Klochikhin, D. Kurdyukov, S. Ivanov, V. Vekshin, F. Bechstedt, J. Furthmuller, J. Aderhold, J. Gaul, A. Mudryi, H, Harima, A. Hashimoto, A. Yamamoto and E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” phys. stat. sol. (b) , 234, No.3, 787-795, 2002
[21] N. Neptal, K. Nam, M. Nakarmi, J. Lin and H. Jiang, “Optical properties of the nitrogen vacancy in AlN epilayers,” Appl. Phys. Lett. 84, 1090–1092, 2004
[22] A. Kashyout, M. Fathy, S. Gad, Y. Badr and A. Bishara, “Synthesis of Nanostructure InxGa1−xN Bulk Alloys and Thin Films for LED Devices,” Photonics, 6(2), 44, 2019
[23] J. Hwang, W. Schaff and L. Eastman, “Si doping of high-Al-mole fraction AlxGa1ÀxN alloys with rf plasma-induced molecular-beam-epitaxy,” Appl. Phys. Lett., 81, 5192–5194, 2002
[24] N. Chowdhury, G. Fiori and T. Palacios, “GaN Nanowire n-MOSFET With 5 nm Channel Length for Applications in Digital Electronics,” IEEE Electron Device Letters, Volume: 38, Issue: 7, July 2017
[25] D. Williams, A. Andreev, E. O’Reilly and D. Faux, “Derivation of built-in polarization potentials in nitride-based semiconductor quantum dots,” Phys. Rev. B, 72, 235318, December 2005
[26] S. Konzelmann, C. Hoffmann, R. Merte and D. Peier, “Thermal and Electrical Properties of Aluminum Nitride Filled Epoxy-resin Compound,” IEEE Transactions on Dielectrics and Electrical Insulation, Volume 15, Issue 2, April 2008
[27] Bougrov V., Levinshtein M.E., Rumyantsev S.L., Zubrilov A., in Properties of Advanced SemiconductorMaterials GaN, AlN, InN, BN, SiC, SiGe . Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John Wiley & Sons, Inc., New York, 2001, 1-30.
[28] W. Lambrecht and B. Segall, “Anomalous band-gap behavior and phase stability of c- BN-diamond alloys,” Phys. Rev. B,47, 9289-9296, 1993
[29] S. Pugh, D. Dugdale, S. Brand and R. Abram “Electronic structure calculations on nitride semiconductors,” Semiconductor Science and Technology, Volume 14, Number 1, 1999
[30] Y. Xu and W. Ching, “Electronic, optical, and structural properties of some wurtzite crystals,” Phys. Rev. B, 48, 4335, 15 August 1993
[31] S. Chae, J. Lee, K. Mengle, J. Heron and E. Kioupakis, “Rutile GeO2: An ultrawide-band-gap semiconductor with ambipolar doping,” Appl. Phys. Lett., 114, 102104, 2019
[32] G. Koley, M. G. Spencer, “Surface potential measurements on GaN and AlGaN/GaN heterostructures by scanning Kelvin probe microscopy,” Journal of Applied Physics, 90, 337–344, 2001
[33] C. Ho, S. Chen and Y. Wu, “Study of the Factors Limiting the Efficiency of Vertical-Type Nitride- and AlInGaP-Based Quantum-Well Micro-LEDs,” Processes, 10(3), 489, 2022
[34] P. Sohi, J.Carlin and N. Grandjean, “Alloy disorder limited mobility of InGaN two-dimensional electron gas,” Appl. Phys. Lett., 112, 262101, 2018
[35] M. Coltrin, A. Baca and R. Kaplar “Analysis of 2D Transport and Performance Characteristics for Lateral Power Devices Based on AlGaN Alloys,” ECS J. Solid State Sci. Technol., 6 S3114, 2017
[36] C. Chen, T. Huang, Y. Lin, Y. Lin, P. Wu, P. Liou, H. Hsieh, Y. Huang, S. Yang, Y. Wu and C. Yang, “Hole mobility behavior in Al-gradient polarization-induced p-type AlGaN grown on GaN template,” Appl. Phys. Lett., 120, 022103, 2022
[37] F. Bernardini and V. Fiorentini and O. Ambacher, “Nonlinear macroscopic polarization in III-V nitride alloys,” Phys. Rev. B, 64, 085207, 2001
[38] F. Bernardini and V. Fiorentini and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett., 80, 1204, 2002
[39] A. E. Romanov, T. Baker, S. Nakamura and J. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys., 100, 023522, 2006
[40] F. Sacconi , A. Carlo, P. Lugli and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Transactions on Electron Devices, Volume: 48, Issue: 3, 450 – 457, 2001
[41] Hisashi Masui “Diode ideality factor in modern light-emitting diodes,” Semicond. Sci. Technol., 26 075011, 2011
[42] Q. Pham, J. Chen, H. Nguyen, “Three-Dimensional Numerical Study On the hole accelerator Efficiency Droop in InGaN/GaN Light-Emitting Diodes,” IEEE Photonics Journal, Volume: 11, Issue: 1, 2019
[43] F. Römer and B Witzigmann, “Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs,” Optics Express, Vol. 22, Issue S6, pp. A1440-A1452, 2014
[44] Sergey Karpov, “ABC-Model for Interpretation of Internal Quantum Efficiency and Its Droop in III-Nitride LEDs: A Review,” Optical and Quantum Electronics 47(6):1293- 1303, 2015