跳到主要內容

簡易檢索 / 詳目顯示

研究生: 施仲承
Jhong-Cheng Shih
論文名稱: 用於量化無線感測網路中直視與非直視訊號模型的EM方法實現目標物定位
Target Localization with the EM Method for LOS/NLOS Models in Quantized Wireless Sensor Networks
指導教授: 張大中
Dah-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: 非直視高斯混合量化最大期望無線感測器網路
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究了無線感測器網路(Wireless Sensor Network, WSN) 在混合直視(Line Of Sight, LOS) 與非直視(Non-Line Of Sight, NLOS) 訊號環境中的目標物定位,由於非直視訊號的影響,會使得原本的定位方法準確度下降,加上考量到感測器資源有限,是以接收訊號強度(Received Signal Strength, RSS) 等數據對其做量化(quantization),融合中心以此量化訊號進行目標物定位。
    由於非直視訊號的效應,我們透過建立雙模式高斯混合分佈的測量誤
    差,並且假設其混合模型參數是完全未知,因此採用最大期望(Expectation Maximization, EM) 方法來近似目標物位置和混合模型參數的最大似然估計(Maximum Likelihood Estimation, MLE),而我們所提出的方法修正了最小平方法(Least Squares Estimation, LSE) 在測量誤差屬於高斯混合分佈的狀況。


    We studied the target localization method for quantized wireless sensor networks(WSN) in the mixed Line Of Sight (LOS) and Non-Line Of Sight (NLOS) signal environments. Owing to the influence of NLOS signals, the accuracy of conventional localization methods are degraded. And, considering limited power resources of sensors,
    the Received Signal Strength (RSS) data is usually quantized to several bits. The fusion center can only employ the quantized signals to localize the target position. Due to the effect of non-line of sight signals, we model the measurement noise as a Gaussian mixture distribution and assume that the mixture model parameters are completely unknown. Therefore, the Expectation Maximization (EM) method is used to approximate the Maximum Likelihood Estimation (MLE) target position and the mixed model parameters. The proposed method modifies the Least Squares Estimation (LSE) condition in which the measurement error belongs to a Gaussian mixture distribution.

    目錄 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . ii 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . i 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . ii 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . iv 第1 章序論 . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 章節架構 . . . . . . . . . . . . . . . . . . . . . . 3 第2 章訊號模型和問題描述. . . . . . . . . . . . . . . . . 4 2.1 訊號模型 . . . . . . . . . . . . . . . . . . . . . . 4 2.2 量化訊號 . . . . . . . . . . . . . . . . . . . . . . 7 2.3 問題描述 . . . . . . . . . . . . . . . . . . . . . . 8 第3 章位置估計演算法. . . . . . . . . . . . . . . . . . . 9 3.1 量化訊號的最大似然估計. . . . . . . . . . . . . . . . 9 3.2 引入量化訊號的最小平方估計法. . . . . . . . . . . . . 12 3.3 -law 訊號壓縮法. . . . . . . . . . . . . . . . . . 15 3.4 適用於高斯混合模型的非線性估計. . . . . . . . . . . . 21 3.4.1 高斯混合模型參數的最大似然估計. . . . . . . . . . . 21 3.4.2 最大期望演算法(Expectation Maximization Algorithm, EM) . . . .22 3.4.3 高斯混合模型的位置估計法流程. . . . . . . . . . . . 29 第4 章Cramér–Rao Lower Bound . . . . . . . . . . . . . 31 第5 章高斯-牛頓法與Nelder-Mead 單純型搜索法. . . . . . . .36 5.1 高斯-牛頓法(Gauss-Newton Method) . . . . . . . . . .36 5.2 Nelder-Mead 單純型搜索法(Nelder-Mead Simplex Search Method) . . 40 第6 章系統模擬與結果分析 . . . . . . . . . . . . . . . . 42 6.1 模擬環境說明. . . . . . . . . . . . . . . . . . . . 42 6.2 模擬結果與討論. . . . . . . . . . . . . . . . . . . 46 6.2.1 1bit 量化 . . . . . . . . . . . . . . . . . . . 47 6.2.2 2bits 量化 . . . . . . . . . . . . . . . . . . . 48 6.2.3 3bits 量化 . . . . . . . . . . . . . . . . . . . 51 6.2.4 Floating point 浮點數 . . . . . . . . . . . . . .54 6.3 演算法的收斂曲線 . . . . . . . . . . . . . . . . . . 57 6.3.1 EM 演算法收斂曲線. . . . . . . . . . . . . . . . .57 6.3.2 Nelder-Mead 單純型搜索法、高斯-牛頓法和EM-BFGS 法收斂 曲線和計算時間. . . . . . . . . . . . . . . . . . . . . 57 第7 章結論. . . . . . . . . . . . . . . . . . . . . . . 65 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . 66

    [1] S. Borman, “The expectation maximization algorithm-a short tutorial,” Submitted
    for publication, vol. 41, 2004.
    [2] S. Prince, Computer Vision: Models Learning and Inference. Cambridge University
    Press, 2012.
    [3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
    networks: a survey,” Computer networks, vol. 38, no. 4, pp. 393–422, 2002.
    [4] R. Niu and P. K. Varshney, “Performance analysis of distributed detection in a
    random sensor field,” IEEE Transactions on Signal Processing, vol. 56, no. 1, pp.
    339–349, Jan 2008.
    [5] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal,
    “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE
    Signal Processing Magazine, vol. 22, no. 4, pp. 54–69, July 2005.
    [6] T. He, P. Vicaire, T. Yan, Q. Cao, G. Zhou, L. Gu, L. Luo, R. Stoleru, J. A.
    Stankovic, and T. F. Abdelzaher, “Achieving long-term surveillance in vigilnet,”
    in Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on
    Computer Communications, April 2006, pp. 1–12.
    [7] A. D. Wood, J. A. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu,
    L. Fang, and R. Stoleru, “Context-aware wireless sensor networks for assisted living
    and residential monitoring,” IEEE Network, vol. 22, no. 4, pp. 26–33, July
    2008.
    [8] R. Mittal and M. P. S. Bhatia, “Wireless sensor networks for monitoring the environmental
    activities,” in 2010 IEEE International Conference on Computational
    Intelligence and Computing Research, Dec 2010, pp. 1–5.
    [9] H. Lee, A. Banerjee, Y. Fang, B. Lee, and C. King, “Design of a multifunctional
    wireless sensor for in-situ monitoring of debris flows,” IEEE Transactions on Instrumentation
    and Measurement, vol. 59, no. 11, pp. 2958–2967, Nov 2010.
    [10] J. Liberti and T. Rappaport, Smart antennas for wireless communications: IS-95
    and third generation CDMA applications, ser. Prentice Hall communications engineering
    and emerging technologies series. Prentice Hall, 1999, includes bibliographical
    references (pages 345-365) and index.
    [11] K. Yang, G. Wang, and Z. Luo, “Efficient convex relaxation methods for robust
    target localization by a sensor network using time differences of arrivals,” IEEE
    Transactions on Signal Processing, vol. 57, no. 7, pp. 2775–2784, July 2009.
    [12] R. P and M. L. Sichitiu, “Angle of arrival localization for wireless sensor networks,”
    in 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc
    Communications and Networks, vol. 1, Sep. 2006, pp. 374–382.
    [13] X. Li, “Rss-based location estimation with unknown pathloss model,” IEEE Transactions
    on Wireless Communications, vol. 5, no. 12, pp. 3626–3633, December
    2006.
    [14] G. Wang and K. Yang, “A new approach to sensor node localization using rss
    measurements in wireless sensor networks,” IEEE Transactions on Wireless Communications,
    vol. 10, no. 5, pp. 1389–1395, May 2011.
    [15] R. Niu and P. Varshney, “Target location estimation in wireless sensor networks
    using binary data,” in 38th Annual Conference on Information Sciences and Systems,
    2004.
    [16] R. Niu and P. K. Varshney, “Target location estimation in sensor networks with
    quantized data,” IEEE Transactions on Signal Processing, vol. 54, no. 12, pp.
    4519–4528, Dec 2006.
    [17] F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless networks:
    possibilities and fundamental limitations based on available wireless network measurements,”
    IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 41–53, July
    2005.
    [18] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless networks,”
    Proceedings of the IEEE, vol. 97, no. 2, pp. 427–450, Feb 2009.
    [19] L. Cheng, Q. Qi, X. Wu, Y. Shao, and Y. Wang, “A nlos selection based localization
    method for wireless sensor network,” in 2017 7th IEEE International Conference
    on Electronics Information and Emergency Communication (ICEIEC), July 2017,
    pp. 340–343.
    [20] S. Tomic, M. Beko, R. Dinis, and P. Montezuma, “A robust bisection-based estimator
    for toa-based target localization in nlos environments,” IEEE Communications
    Letters, vol. 21, no. 11, pp. 2488–2491, Nov 2017.
    [21] Y. Wang, L. Cheng, and N. Hu, “Bayes sequential test based nlos localization
    method for wireless sensor network,” in The 27th Chinese Control and Decision
    Conference (2015 CCDC), May 2015, pp. 5230–5234.
    [22] Y. Huang, S. Zhang, and Y. Jing, “An indoor mobile localization strategy based on
    particle filter in nlos environment,” in 2016 Chinese Control and Decision Conference
    (CCDC), May 2016, pp. 6518–6522.
    [23] S. Korkmaz and A. van der Veen, “Robust localization in sensor networkswith iterative
    majorization techniques,” in 2009 IEEE International Conference on Acoustics,
    Speech and Signal Processing, April 2009, pp. 2049–2052.
    [24] J. N. Ash and R. L. Moses, “Outlier compensation in sensor network selflocalization
    via the em algorithm,” in Acoustics, Speech, and Signal Processing,
    2005. Proceedings.(ICASSP’05). IEEE International Conference on, vol. 4.
    IEEE, 2005, pp. iv–749.
    [25] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete
    data via the em algorithm,” JOURNAL OF THE ROYAL STATISTICAL
    SOCIETY, SERIES B, vol. 39, no. 1, pp. 1–38, 1977.
    [26] G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell, Engineering optimization:
    Methods and applications. Wiley New York, 1983.
    [27] E. C. Ifeachor and B. W. Jervis, Digital signal processing: a practical approach.
    Pearson Education, 2002.
    [28] F. Yin, A. M. Zoubir, C. Fritsche, and F. Gustafsson, “Robust cooperative sensor
    network localization via the em criterion in los/nlos environments,” in 2013
    IEEE 14th Workshop on Signal Processing Advances in Wireless Communications
    (SPAWC), June 2013, pp. 505–509.
    [29] F. Yin, C. Fritsche, D. Jin, F. Gustafsson, and A. M. Zoubir, “Cooperative localization
    in wsns using gaussian mixture modeling: Distributed ecm algorithms,”
    IEEE Transactions on Signal Processing, vol. 63, no. 6, pp. 1448–1463, March
    2015.
    [30] and, “Energy based collaborative source localization using acoustic micro-sensor
    array,” in 2002 IEEE Workshop on Multimedia Signal Processing., Dec 2002, pp.
    371–375.
    [31] O. Ozdemir, R. Niu, and P. K. Varshney, “Channel aware target localization with
    quantized data in wireless sensor networks,” IEEE Transactions on Signal Processing,
    vol. 57, no. 3, pp. 1190–1202, March 2009.
    [32] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.
    Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.
    [33] A. Mezghani, M. Khoufi, and J. A. Nossek, “Maximum likelihood detection for
    quantized mimo systems,” in 2008 International ITG Workshop on Smart Antennas,
    Feb 2008, pp. 278–284.
    [34] S. B. V. and, “Likelihood-based statistical estimation from quantized data,” IEEE
    Transactions on Instrumentation and Measurement, vol. 54, no. 1, pp. 409–414,
    Feb 2005.
    [35] S. Schlupkothen, G. Dartmann, and G. Ascheid, “A novel low-complexity numerical
    localization method for dynamic wireless sensor networks,” IEEE Transactions
    on Signal Processing, vol. 63, no. 15, pp. 4102–4114, Aug 2015.
    [36] J. Bilmes, “A gentle tutorial of the em algorithm and its application to parameter
    estimation for gaussian mixture and hidden markov models,” Tech. Rep., 1998.
    [37] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York, NY,
    USA: Springer, 2006.
    [38] W. Spendley, G. R. Hext, and F. R. Himsworth, “Sequential application of simplex
    designs in optimisation and evolutionary operation,” Technometrics, vol. 4, no. 4,
    pp. 441–461, 1962. [Online]. Available: http://www.jstor.org/stable/1266283

    QR CODE
    :::