| 研究生: |
林思達 Szu-ta Lin |
|---|---|
| 論文名稱: |
改良GWLF模式應用於翡翠水庫入流量模擬 Modification of the GWLF Model to Simulate the Feitsui Reservoir Inflow |
| 指導教授: |
李明旭
Ming-hsu Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 流量 、馬斯金更法 、翡翠水庫 |
| 外文關鍵詞: | Feitsui Reservoir, Maskingum method, discharge |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區位於亞熱帶氣候,年雨量雖多達2500公釐,但由於河流短促,降水在集水區停留時間有限,造成可利用的水量相對偏少。為了提供生活與經濟所需,需依賴興建水庫來儲存水量與防洪、發電等功用。翡翠水庫位於北勢溪下游,自民國76年建壩至今蓄水運轉已二十餘年,主要供應大臺北地區近四百萬民生用水,為臺北地區重要水源。
本研究收集基礎水文氣象資料,利用GWLF模式河川模組進行翡翠水庫入流量之模擬。分析結果發現,雖然模式在年與月流量模擬結果相當吻合,但在日的時間尺度上有相當大的誤差。主要原因為蒸發散呈現高估,且地表逕流並無傳輸時間概念,因此本研究修改模式架構,在蒸發散計算中加入土壤阻抗與蒸發散門檻等概念,在地表逕流計算上利用馬斯金更法,使修改模式後能應用於日入流量模擬。
結果顯示,日流量相關係數平方檢定結果從原本的0.744增加到0.871,效率係數從原本的0.724增加到0.834,方均根差從0.902cm進步到0.718cm。而在事件的模擬中修正了洪峰發生時間過早且洪峰流量高估的問題,也修正了降雨停止後退水過快的問題,因此改良後的模式能符合翡翠水庫集水區的日逕流特性。
Although Taiwan has subtropical climate with annual rainfall of more than 2500 mm, limited water resource is still an issue due to short and steep rivers causing relative short residence time of surface runoffs. Reservoirs were often built to fulfill requirements of water resources and provide flood mitigation and power generation. The Feitsui Reservoir has been operated since 1987 and is the most important water resources for the 4 million people lived in the Taipei metropolitan.
The original GWLF model was first applied to simulate the inflow of the Feitsui Reservoir with observed hydrological and meteorological data. Although monthly and annual inflows can be perfectly simulated, errors in daily inflows are significant. The main reasons are overestimate of evapotranspiration and lacking of temporal transmission in surface runoff. Computations of evapotranspiration are modified with effects of landuse, soil moisture resistance, and a threshold to hinder evapotranspiration during small rainfall days. Temporal transmission of surface runoff is modified with the ability of temporal routing by incorporating the concept of the Maskingum method.
The new model has a better capability to simulate daily inflows of the Feitsui reservoir than the original GWLF model. By examining the observed and predicted daily inflows with both models, the correlation coefficient is 0.871 (original is 0.744), the coefficient of efficiency is 0.843 (original is 0.724), the root mean square error is 0.718 cm (original is 0.902 cm). For extreme rainfall events, the new model overcomes the problems of early peak flows, overestimated peak, and steep recession as commonly appeared in the original model. The new GWLF model now can be more appropriate to simulate daily, monthly, and annual inflows of the Feitsui Reservoir.
1.汪中和,2003,「台灣水庫的現況」,環境資訊中心網頁。http://e-info.org.tw/column/earthday/2003/ea03052201.htm
2.楊道昌、游保杉,1997,「目標函數對連續型降雨-逕流模式率定之影響」,台灣水利季刊,第四十五卷,第四期,第66-73頁。
3.黃誌川、高樹基、郭鎮維、李宗祐,2007,「地形指數模式在台灣北部山地集水區降雨逕流之模擬-以橫溪集水區為例」,地理研究47。
4.黃佳慧,2005,「以HSPF營養鹽模組討論農業對水庫非點源汙染負荷的供獻」,國立成功大學環境工程學系碩士論文。
5.范純志,1998,「氣候變遷對臺灣地區地下水補注量的影響」,國立台灣大學農業工程研究所碩士論文。
6.洪念民,1997,「氣候變遷對大安溪水資源營運之影響」,國立台灣大學農業工程研究所碩士論文。
7.邱奕霖,2005,「地表過程蒸發散之觀測與分析」,國立中央大學水文科學研究所碩士論文。
8.經濟部水利署水利規劃試驗所,2007,強化區域水資源永續利用與因應氣候變遷之調適能力(1/2)。
9.經濟部水資源局,2000,台灣地區合理之蒸發散折算係數與區域蒸發散量估算方法之建立(1/2)。
10.陳瑋茹,2008,「修正GWLF模式應用於氣候變遷對七家灣溪流量與泥沙量之影響評估」,國立台灣大學生物環境系統工程學研究所碩士論文。
11.張廷暐,2008,「氣候變遷對水庫集水區入流量之衝擊評估-以石門水庫集水區為例」,國立中央大學水文科學研究所碩士論文。
12.何宗翰,2007,「氣候變遷影響集水區氮磷輸出之研究」,國立中央大學土木工程研究所碩士論文。
13.顏子豪,2008,「氣候變遷對於集水區入流量之衝擊評估-以翡翠水庫集水區為例」,國立台灣大學土木工程學研究所碩士論文。
14.范正成,2006,「 翡翠水庫集水區污染削減計畫」,行政院環境保護署。
15.楊富雄,2003,「以禁忌演算法推估流域空間降雨」,國立中央大學水文科學研究所碩士論文。
16.余文利,2005,「翡翠水庫集水區水文分析」,國立中央大學水文科學研究所碩士論文。
17.宋睿唐,2004,「分散式降雨逕流模式之建立及暴雨時期流量之模擬」,國立中央大學水文科學研究所碩士論文。
18.經濟部水資源局,2000,台灣地區合理之蒸發散折算係數與區域蒸發散量估算方法之建立(2/2)。
19.鄭明昇,2007,「桃園灌區之區域迴歸水分析研究」,國立中央大學水文科學研究所碩士論文。
20.王如意,易任,1999,「應用水文學」,國立編譯館出版,茂昌圖書有限公司發行。
21.李光敦,2002,「水文學」,五南圖書出版股份有限公司出版
22.翡翠水庫管理局網站http://www.feitsui.gov.tw/
23.經濟部國土資訊系統網站http://ngis.moea.gov.tw/moeaweb/indexWi.html
24.Akthar, M., Ahmad, N., Booij, M. J., 2008. The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. Journal of Hydrology. 355, 148-163.
25.Bergström, S., 1976. “Development and application of a conceptual runoff model for Scandinavian catchments,” Report RHO 7, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.
26.Beven, K. J., and Kirkby, M. J., 1979. A physically based, variable contributing area model of basin hydrology. Hydrological processes, 9: 401-422.
27.Bicknell, B. R., Imhoff, J. C., Kittle, J. L., Donigian, A. S., Jr. and Johanson, R. C., 1996. Hydrological Simulation Program Fortran(HSPF)-User''s Manual, U.S. EPA, National Exposure Research Laboratory Office of Research and Development, EPA/600/R-97/080.
28.Chow, V. T., Maidment, D. R., and Mays, L. W., 1988. “Applied Hydrology”, McGraw-Hill, pp147-152.
29.Davies, J. A., and Allen, C. D., 1973. Equilibrium, potential, and actual evaporation from cropped surfaces in southern Ontario. Journal of Applied Meteorology, 12:647-657.
30.Dingman, S. L., 2002. “Physical Hydrology”.
31.Federer, C. A., 1979. A soil-plant-atmosphere model for transpiration and availability of soil water. Water Resources Research, 15:555-562.
32.Federer, C. A., 1982. Transpirational supply and demand: Plant, soil, and atmospheric effects evaluated by simulation. Water Resources Research, 18:355-362.
33.Haith, D. A., Mandel, R., and Wu, R. S., 1992. “General WatershedLoading Function”, Version 2.0., Cornell University.
34.Hamon, W. R., 1961: Estimating potential evapotranspiration. Proceedings of the American Society of Civil Engineers, Journal of the Irrigation and Drainage Division, 104(IR4), pp.107-120.
35.Makoto, T., 1996. An approach to annual water balance for small mountainous catchments with wide spatial distributions of rainfall and snow water equivalent. Journal of Hydrology. 183, 205-225.
36.Mishra, S. K., and Singh, V. P., 2003b. Soil conservation service curve number (SCS-CN) methodology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
37.Nash, J. E., and Sutcliffe, J. V., 1970. River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10 (3), 282–290.
38.Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., King, K. W., 2002. Soil and Water Assessment tool theoretical documentation, version 2000, Agriculture Research Service.
39.Spittlehouse, D. L., Black, T. A., 1981. A growing season water balance model applied to two Douglas fir stands. Water Resources Research, 17:1651-1656.
40.Wu, K., Johnston, C. A., 2007. Hydrologic response to climatic variability in a Great Lakes Watershed: A case study with the SWAT model. Journal of Hydrology. 337, 187-199.