跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉宜佩
Yi-Pei Liu
論文名稱: 以氯化物為媒介的二-去氧半乳醣之立體選擇性醣鏈結反應之探討
Glycosyl Chloride-mediated Stereoselective Glycosylation Reaction of 2-Deoxy galactose
指導教授: 王正中
Cheng-Chung Wang
李文仁
Wen-Ren Li
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 188
中文關鍵詞: 二-去氧半乳醣醣鏈結反應
外文關鍵詞: 2-Deoxy galactose, Glycosylation Reaction
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醣在自然界中分布廣泛,且在生活中扮演重要的角色,而有效控制醣鏈結的立體位向是醣化學中具挑戰性的議題。不同於以往的文獻,我們發現,醣鏈結反應中加入含有氯離子的促進劑會參與醣鏈結反應,反應過程中會形成醣基氯化物的中間產物,進而影響立體選擇性。
    從本實驗室的研究發現,我們了解到醣基氯化物之中間產物的重要性。本篇論文主要探討二-去氧半乳醣在醣基氯化物的中間產物媒介下的醣鏈結反應之立體選擇性。我們先藉由低溫核磁共振光譜的幫助來進行醣基氯化物之中間產物的鑑定。我們並且另外在反應中加入不同種類的促進劑,或是不同種類的添加劑,探討其如何影響醣鏈結反應的立體選擇性。


    Sugars are widely distributed in nature, and play important roles in living systems. Controlling the stereoselectivity in glycosylation reactions is a challenging issue in carbohydrate chemistry. Different from commonly believed in the literature, we have found that the chloride from the promoters actually participates into the glycosylation reactions, and the chloride- intermediates affects the stereoselectivity.
    From ours discovery, we understand the importance of the glycosyl-chloride intermediate. In this thesis, we focus on how the influence of 2-deoxygalactosyl chloride intermediates affects the stereoselectivity of their glycosylation reactions. We first identified the 2-deoxygalactosyl intermediates by NMR spectroscopy under low temperature. Furthermore, we added different types of promoters and additives in the reaction to investigate their effect to the stereoselectivity of the glycosylation reactions.

    摘要 ............................................................................................................... ii Abstract ........................................................................................................ iii 縮寫表 .......................................................................................................... iv 目次 .............................................................................................................. vi 表目次 ......................................................................................................... iix 圖目次 ........................................................................................................... x 流程目次 ...................................................................................................... xi 方程式目次 ................................................................................................. xii 一、 緒論 ............................................................................................... 1 (一) 引言 .......................................................................................... 1 (二) 2-deoxy醣鏈結的探討 ............................................................ 4 1. 2-deoxy 醣苷鍵的挑戰 ........................................................... 4 2. 2-deoxy 醣鏈結合成領域的研究 ........................................... 4 3. 2-deoxy 醣苷鍵形成的因素………………………………...5 (三) 2-deoxy 醣鍵結反應之文獻回顧 ......................................... 12 1. 硫代醣苷的合成應用 ............................................................ 12 1.1 直接 (direct) 合成策略…………………………………. 12 1.2 非直接 (indirect) 合成策略……………………………...15 2. 活性氧的衍生物的合成應用. .............................................. 17 2.1 直接 (direct) 合成策略…………………………………. 17 2.2 非直接 (indirect) 合成策略……………………………...22 3. 烯醣的合成應用 .................................................................... 23 3.1 直接 (direct) 合成策略…………………………………. 23 vii 3.2 非直接 (indirect) 合成策略……………………………...28 4. 醣基鹵化物的合成應用........................................................ 30 (四) 2-deoxy 醣鍵結反應之研究動機 ......................................... 35 1. 蒙國光教授利用 Dimethylformamide modulation控制立體選擇性………………………………………………………….35 2. 葉新山和黃雪飛教授利用 para-toluenesulfenyl chloride (p-TolSCl) 和 silver triflate (AgOTf) 控制醣鏈結反應的立體選擇性………………………………………………………….....39 3. 王正中教授利用氯化物為媒介進行立體選擇性醣鏈結…40 4. 研究動機……………………………………………………44 二、 結果與討論 ................................................................................. 45 (一) 化合物 133、134 之合成 .................................................... 45 (二) 化合物 144、145 之合成 .................................................... 48 (三) 中間產物-醣基氯化物 146、147 之偵測 ........................... 49 (四) 化合物 133 之反應機構探討 .............................................. 55 (五) 化合物 133、134 醣鏈結反應之立體選擇性探討 ............ 56 (六) 化合物 133 之立體選擇性探討 .......................................... 58 (七) 化合物 133 對於不同醣受體且反應中加入 TTBP之立體選擇性探討………………………………………………………….61 (八) 對於化合物 133 加入不同的促進劑之立體選擇性探討 .. 65 (九) 對於化合物 133 與醣受體 145 在不同反應條件之立體選擇性探討…………………………………………………………….68 (十) 化合物 133 各別與醣受體 148a、144、145 中加入不同添加劑之立體選擇性探討…………………………………………….71 (十一) 化合物 134 與醣受體 148a、144、145 反應中加入添 viii 加劑 TTBP之立體選擇性探討…………………………………..81 (十二) 化合物 107 加入不同的促進劑之立體選擇性探討…84 (十三) 化合物155 與醣受體 158 反應之立體選擇性探討…88 三、 結論 ............................................................................................. 92 四、 實驗部分 ..................................................................................... 93 (一) 一般實驗敘述 ........................................................................ 93 (二) 實驗步驟與物理數據 ............................................................ 94 五、 參考資料 ................................................................................... 123 六、 核磁共振光譜圖 ....................................................................... 128

    1. D. Hou,; T. L. Lowary, Carbohydr. Res. 2009, 344, 1911-1940.
    2. A. K. V. Iyer,; M. Zhou,; N. Azad,; H. Elbaz,; L. Wang,; D. K. Rogalsky,; Y. Rojanasakul,; G. A. OʼDoherty,; J. M. Langenhan, ACS Med. Chem. Lett. 2010, 1, 326-330.
    3. Sastry, M.; Patel, D. J. Biochemistry 1993, 32, 6588-6604.
    4. Daniel, P. T.; Koert, U.; Schuppan, J. Angew. Chem., Int. Ed. 2006, 45, 872-893.
    5. Overend, W.; Rees, C.; Sequeira, J. J. Chem. Soc. 1962, 3429-3440.
    6. a) V. Bolitt, C.; Mioskowski, S.-G.; Lee, J. R.; Falck, J. Org. Chem. 1990, 55, 5812-5813; b) B. D. Sherry, R. N.; Loy, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 4510-4511; c) H.-C. Lin.; J.-F. Pan.;
    Y.-B.Chen,; Z.-P. Lin,; C.-H. Lin, Tetrahedron 2011, 67, 6362- 6368; d) E. I. Balmond, D. M.; Coe, M. C.; Galan, E. M.; McGarrigle, Angew.Chem. 2012, 124, 9286-9289; Angew. Chem. Int. Ed. 2012, 51, 9152-9155.
    7. Marzabadi, C. H.; Franck, R. W. Tetrahedron 2000, 56, 8385-8417.
    8. Kirschning, A.; Bechthold, A. F. W.; Rohr, J. In Bioorganic Chemistry: Deoxysugars, Polyketides and Related Classes: Synthesis; Biosynthesis: Enzymes, 1997. pp. 1-84.
    9. Hallis, T. M.; Liu, H.-W. Acc. Chem. Res. 1999, 32, 579-588.
    10. He, X.; Agnihotri, G.; Liu, H.-W. Chem. Rev. 2000, 100, 4615-4662.
    11. He, X. M.; Liu, H. W. Curr. Opin. Chem. Biol. 2002, 6, 590-597.
    12. Zhu, X.; Schmidt, R. Angew. Chem., Int. Ed. 2009, 48, 1900-1934.
    13. Carmona, A. T.; Moreno-Vargas, A. J.; Robina, I. Curr. Org. Synth. 2008, 5, 33-60.
    124
    14. Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon: Oxford, 1983.
    15. Juaristi, E.; Cuevas, G. In The Anomeric Effect; CRC Press: Boca Raton, 1994; pp183-194.
    16. a) Thiem, J.; Karl, H.; Schwentner, J. Synthesis 1978, 696-697; b) Thiem,J. in Trends in Synthetic Carbohydrate Chemistry, (Eds: Horton, D.; Hawkins, L. D.; McGarvey, G. J.), ACS Symposium Series 386, American Chemical Society, Washington, DC, 1989, Chapter 8, pp. 131-149; c) Roush, W. R.; Briner, K.; Sebesta, D. P. Synlett 1993, 264-266; d) Roush, W. R.; Bennett, C. E. J. Am. Chem. Soc. 1999, 121, 3541-3542; e) Roush, W. R.; Gung, B. W.; Bennett, C. E. Org. Lett. 1999, 1, 891-893
    17. a) Tatsuta, K.; Fujimoto, K.; Kinoshita, M.; Umezawa, S. Carbohydr.
    Res. 1977, 54, 85-104; b) Thiem, J.; Gerken, M. J. Org. Chem. 1985,
    50, 954-958; c) Thiem, J.; Schottmer, B. Angew. Chem. 1987, 199,
    591-592; Angew. Chem. Int. Ed. 1987, 26, 555-557.
    18. a) Bucher, C.; Gilmour, R. Angew. Chem. 2010, 122, 8906-8910;
    Angew. Chem. Int. Ed. 2010, 49, 8724-8728; b) E. Durantie,; Bucher, C.; Gilmour, R. Chem. Eur. J. 2012, 18, 8208-8215.
    19. a) Ito, Y.; Ogawa, T. Tetrahedron Lett. 1987, 28, 2723-2726; b) Grewal, G.; Kaila, N.; Franck, R. W. J. Org. Chem. 1992, 57, 2084-2092; c) Franck, R. W.; Kaila, N. Carbohydr. Res. 1993, 239, 71-83; d) Ramesh, S.; Franck, R. W. Chem. Commun. 1989, 960-961.
    20. a) Barrett, A. G. M.; Miller, T. Tetrahedron Lett. 1988, 29, 1873-1874; b) Perez, M.; Beau, J.-M. Tetrahedron Lett. 1989, 30, 75-78; c) Sebesta, D. P.; Roush, W. R. J. Org. Chem. 1992, 57, 4799-4802; d) Nicolaou, K. C.; Pastor, J.; Barluenga, S.; Winssinger, N. Chem. Commun. 1998, 1947-1948.
    21. Capozzi, G.; Dios, A.; Franck, R. W.; Geer, A.; Marzabadi, C.; Menichetti, S.; Nativi, C.; Tamarez, M. Angew. Chem. 1996, 108, 805-807; Angew. Chem.
    125
    Int. Ed. Engl. 1996, 35, 777-779.
    22. Dudley, T. J.; Smoliakova, I. P.; Hoffmann, M. R. J. Org. Chem. 1999, 64, 1247-1253.
    23. Bravo, F.; Viso, A.; Alcazar, E.; Molas, P.; Bo, C.; Castillon, S. J. Org. Chem. 2003, 68, 686–691.
    24. Beaver, M.; Billings, S.; Woerpel, K. Eur. J. Org. Chem. 2008, 2008, 771-781.
    25. Jones, D. K.; Liotta, D. C. Tetrahedron Lett. 1993, 34, 7209-7212.
    26. Hou, D.; Taha, H.; Lowary, T. J. Am. Chem. Soc. 2009, 131
    27. Codee, J. D. C.; Litjens, R.; van den Bos, L. J.; Overkleeft, H. S.; van der Marel, G. A. Chem. Soc. Rev. 2005, 34, 769-782.
    28. Garegg, P. J. Adv. Carbohydr. Chem. Biochem. 1997, 52, 179-205.
    29. Lear, M. J.; Yoshimura, F.; Hirama, M. Angew. Chem., Int. Ed. 2001, 40, 946-949.
    30. Paul, S.; Jayaraman, N. Carbohydr. Res. 2007, 342, 1305-1314.
    31. Rodriquez, M. A.; Boutureira, O.; Arnes, X.; Matheu, M. I.; Diaz, Y.; Castillon, S. J. Org. Chem. 2005, 70, 10297-10310.
    32. Kim, K. S.; Park, J.; Lee, Y. J.; Seo, Y. S. Angew. Chem., Int. Ed. 2003, 42, 459-462.
    33. Crich, D.; Vinogradova, O. J. Org. Chem. 2006, 71, 8473-8480.
    34. Tanaka, H.; Yoshizawa, A.; Takahashi, T. Angew. Chem., Int. Ed. 2007, 46, 2505-2507.
    35. Issa, J. P.; Lloyd, D.; Steliotes, E.; Bennett, C. S. Org. Lett. 2013, 16, 4170-4173.
    36. Knapp, S.; Kirk, B. A. Tetrahedron Lett. 2003, 44, 7601-7605.
    37. Danishefsky, S. J.; Bilodeau, M. Angew. Chem., Int. Ed. 1996, 35, 1381-1419.
    38. Nicolaou, K. C.; Trujillo, J. I.; Chibale, K. Tetrahedron 1997, 53, 8751-8778.
    39. Bolitt, V.; Mioskowski, C.; Lee, S.; Falck, J. R. J. Org. Chem. 1990, 55, 5812-
    126
    5813.
    40. Curran, D. P.; Ferritto, R.; Hua, Y. Tetrahedron Lett. 1998, 39, 4937-4940.
    41. Sabesan, S.; Neira, S. J. Org. Chem. 1991, 56, 5468-5472.
    42. Toshima, K.; Nagai, H.; Ushiki, Y.; Matsumura, S. Synlett 1998, 1007-1009.
    43. Wieczorek, E.; Thiem, J. Synlett 1998, 467-468.
    44. Dushin, R. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, 114, 3471-3475.
    45. Yadav, J. S.; Reddy, B. V. S.; Reddy, K. B.; Satyanarayana, M. Tetrahedron Lett. 2002, 43, 7009-7012.
    46. Yadav, J. S.; Subba Reddy, B. V.; Vijaya Bhasker, E.; Raghavendra, S.; Narsaiah, A. V. Tetrahedron Lett. 2007, 48, 677-680.
    47. Colinas, P.; Bravo, R. D. Org. Lett. 2003, 5, 4509-4511.
    48. Sherry, B. D.; Loy, R. N.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4510-4511.
    49. Balmond, E. I.; Coe, D. M.; Galan, M. C.; McGarrigle, E. M.
    Angew. Chem. Int. Ed. 2012, 51, 9152-9155.
    50. Bartolozzi, A.; Capozzi, G.; Menichetti, S.; Nativi, C. Eur. J. Org. Chem. 2001, 2083-2090.
    51. Nitz, M.; Bundle, D. R. In Glycoscience: Chemistry and Chemical Biology; Fraser-Reid, B., Thiem, J., Tatsuta, K., Eds.; Springer: Berlin, 2001; pp 1497-1542.
    52. Toshima, K.; Uehara, K.; Nagai, H.; Matsumura, S. Green Chem. 2002, 27-29.
    53. Toshima, K.; Nagai, H.; Kasumi, K.-i.; Kawahara, K.; Matsumura, S. Tetrahedron 2004, 60, 5331-5339.
    54. Nogueira, J. M.; Nguyen, S. H.; Bennett, C. S. Org. Lett. 2011, 13,
    2814-2817.
    55. Lu, S.-R.; Lai, Y.-H.; Chen, J.-H.; Liu, C.-Y.; Mong, K.-K. T.
    Angew. Chem. Int. Ed. 2011, 50, 7315-7320.
    127
    56. Chen, J.-H.; Ruei, J.-H.; Mong, K.-K. T. Eur. J. Org. Chem. 2014, 1827-1831.
    57. Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov,T.;
    Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734-753
    58. Huang, X.; Huang, L.; Wang, H.; Ye, X.-S. Angew. Chem. 2004, 116,
    5333-5336; Angew. Chem. Int. Ed. 2004, 43, 5221-5224.
    59. Verma, V. P.; Wang, C.-C., Chem. Eur. J. 2013, 19, 846-851.
    60. (a) Miller, J. S.; Dudkin, V. Y.; Lyon, G. J.; Muir, T. W.; Danishefsky, S. J., Angew. Chem. Int. Ed. 2003, 42, 431-434; (b) Crich, D.; Vinogradova, O., J. Org. Chem. 2006, 71, 8473-8480; (c) Lu, Y.-S.; Li, Q.; Zhang, L.-H.; Ye, X.-S., Org. Lett. 2008, 10, 3445-3448; (d) Park, J.; Boltje, T. J.; Boons, G.-J., Org. Lett. 2008, 10, 4367-4370. 61. Lu, Y. S.; Li, Q.; Zhang, L. H.; Ye, X. S. Org. Lett., 2008, 10, 3445-3448.
    62. Wang, Z.; Xu, Y.; Yang, B.; Tiruchinapally, G.; Sun, B.; Liu, R.; Dulaney, S.; Liu, J.; Huang, X., Chem.Eur. J. 2010, 16, 8365-8375.
    63. (a) Lohman, G. J. S.; Seeberger, P. H., J. Org. Chem. 2004, 69, 4081-4093; (b) Orgueira, H. A.; Bartolozzi, A.; Schell, P.; Litjens, R. E. J. N.; Palmacci, E. R.; Seeberger, P. H., Chem. Eur. J. 2003, 9, 140-169.

    QR CODE
    :::