| 研究生: |
許隨贏 Sui-Ying Hsu |
|---|---|
| 論文名稱: |
新型中空多模干涉分光器 Novel hollow multimode interference splitters |
| 指導教授: |
陳啟昌
Chii-Chang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 多模干涉分光器 、中空波導 、直角波導 |
| 外文關鍵詞: | multimde interference splitters, hollow waveguide, right angle waveguide |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般的波導元件,由於必需滿足全反射的要求,所以中心核的折射率要比包覆層的折射率大。而光在波導中傳遞時,將無法避免掉材料色散的問題,而為了將色散問題減至最低,嘗試利用兩種不同介電質的多層膜做為波導包覆層,使中心核的介質為空氣,進而發展出中空波導。
在此論文中,我們利用半導體製程來完成中空全方向反射鏡波導,此種結構具有低損耗、低材料色散、低極化靈敏度等優點。而更進一步,將其應用在波導分光元件上,用來設計1x8的多模干涉分光器,而較傳統的絕緣層上鍍矽的1x8多模干涉分光器有較好的特性:低損耗、元件尺寸小、極化靈敏度低。
最後,為了改良傳統分光元件,在出口端必須加上彎曲波導以耦合光纖,而造成元件尺寸變大。發展出中空直角波導,除了保有原本中空全方向反射鏡波導的特點,更可適用於取代彎曲波導以縮小元件的面積。
In order to content the total reflection condition in the general waveguide device, the index of core must large than index of cladding layer. It doesn’t avoid the material dispersion. We develop a new waveguide structure with multilayer that has two dielectric materials in different refraction of index to confine light in air core.
In this study, we make an omni-directional reflector hollow waveguide with semiconductor fabrication. It has low loss, low material dispersion, and low polarization dependence properties. We applied the structure on the beam splitters to design one by eight multimode interference splitters; it has advantage than conventional silicon-on-insulation structure.
Finally, we develop the right angle waveguide to reduce device size that adds the S bend waveguide in device output to couple optical fiber. It keep the advantages of omni-directional reflector and more adaptable than the S bend waveguide in the outputs of multimode interference splitters.
第一章:
[1.1]E. Voges and A. Neyer, “Integrated-optic device on LiNbO3 for optical communication, ”J. Lightwave Technol., 5, pp.1129-1238, 1987.
[1.2] S. E. Miller, “Integrated Optics: An Introduction,” Bell Syst. Tech. J., vol. 48, no. 7, pp. 2059-2068, 1969.
[1.3]P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides, ”Rev. of Modern Physics, ” 49, pp.361-420, 1977.
[1.4]B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics, ” (Weily, 1991), Chapter 7.
[1.5]Y. Shani, R. C. Kistler, R. F. Kazarinow and K. J. Orlowski, “Integrated optics adiabatic devices on silicon,” IEEE J. Quantum Electron, 27, pp.556-566, 1991.
[1.6]H. Yamagawa, S. Nakamura and K. Ueki, “Broad-band High-Silica Optical Waveguide Star Coupler with Asymmetrical Directional Coupler,” J. Lightwave Technol., 8, pp.1298-1297, 1990.
[1.7]R. Ardar, C. H. Genry, R. F. Kazarinow, R. C. Kistler and G. R. Weber, “Adiabatic 3dB couplers, filters, and multiplexers made with silica waveguides on silicon,” J. Lightwave Technol., 1, pp.46-50, 1992.
[1.8]S. Day, R. Bellerby, G. Gannell and M. Grant, “Silicon based fiber pigtailed 1x16 power splitter,” Electron. Lett., 10, pp.920-922, 1992.
[1.9]L.B. Soldano, E. C. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging Principles and Applications,” J. Lightwave Technol., 13, pp.615, 1995.
[1.10]邱華恭, “矽晶片波導元件研究,” 國立中央大學光電科學研究所碩士論文, 2005.
[1.11]T. J. Tayag, D. M. Mackie, G.. W. Bryant, “A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters,” IEEE Photon. Tech. Lett., 7, pp.896-898, 1995.
[1.12]L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, J. Lightwave Technol., 10, pp.1843-1850, 1992.
[1.13]R. M. Jenkins, R. W. J. Devereux, J. M. Heaton, “A novel waveguide Mach-Zehnder interferometer based on multimode interference phenomena, “ Opt. Commun., 109, pp.410-424,1994.
[1.14] E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers” Bell Syst. Tech. J. 43, pp. 1783-1809, 1964.
[1.15] E. Garmire, T. McMahon and M. Bass, “Propagation of infrared light in flexible hollow waveguide,” Appl. Opt. Vol. 15, pp. 145-150, 1976
[1.16] P. Yeh, A. Yariv and E. Marom, “Statistical analysis of Bragg reflectors,” J. Opt. Soc. Am., 68, pp.1196-1202, 1978.
[1.17]M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett.,49, pp.13-15, 1986.
[1.18]Y. Fink, J. N. Winn, S. Fan, Chiping Chen, J. Michel, J. D. Joannopoulos and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science, 282, pp.1679-1682, 1998.
第二章:
[2.1]A. Yariv and P. Yeh, “Optical waves in crystals,” (Wiley, 1984) Chap. 6.
[2.2]李正中, “薄膜光學與鍍膜技術,” (藝軒圖書出版社, 2004)
[2.3]D. M. Pozar, “Microwave engineering,” 3rd ed, (Wiley, 2005) Chap. 2.
[2.4]J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, “Omnidirectional reflection form a one –dimensional photonic crystal,” Opt. Lett. 23, 1573, 1998
[2.5]E. C. M. Pennings, R.van Roijen, M. J. N. van Stralen, P. J. Waard, R. G. M. P. Koumans and B. H. Verbeek, “Reflection properties of multimode interference devices,” IEEE Photon. Tech. Lett., 6, 6,1994.
[2.6]E. C. M. Pennings, “Bends in optical ridge waveguides: modeling and experiments,” Ph. D. Thesis, Delfr University of Technology, 1990.
[2.7]O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am., 63, pp.416-419, 1973.
[2.8]R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett., 27, pp.337-339, 1975.
[2.9]L. B. Soldano, M. Bouda, M. K. Smit and B. H. Verbeek, Proc. 18th ECOC, Paper Web10, pp.465-468, 1992.
[2.10]J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck and K. P. Hilton, Appl. Phys. Lett., 61, pp.1754-1756, 1992.
第三章:
[3.1]H. Y. Lee, H. Makino, T. Yao, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55mm,” Appl. Phys. Lett., 81, pp.4502-4504, 2002.
[3.2]Y. Park, Y. G. Roh, C. O. Cho, H. Jeon, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett., 82, pp.2770-2772, 2003.
[3.3]K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, L. C. Kinerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett., 75, pp.3805-3807, 1999.
[3.4]S. S. Lo and C. C. Chen, “Air-core hollow optical waveguides with omnidirectional reflectors,” Optical Engineering, 45, 044601, 2006.
[3.5]S. S. Lo, C. H. Hou, H. T. Chien, F. L. Hsiao and C. C. Chen, “Hollow optical waveguides with omni-directional reflectors,” Optoelectronic Integration on Silicon II Proceedings of SPIE, 5730, pp.188-194, 2005.
[3.6]羅仕守, “新型中空光波導研製與應用,” 國立中央大學光電科學研究所博士論文, 2005.
[3.7] S.S. Lo, M.S.Wang, C.C. Chen, “Semiconductor hollow opticalwaveguides formed by omni-directionl reflectors“, Optics Express, Vol.12, pp.6589-6593, 2004.
[3.8] S. S. Lo, H. K. Chiu, C. C. Chen, S. C. Hsu, and C.Y. Liu, “Fabricating Low-Loss Hollow Optical Waveguides via Amorphous Silicon Bonding Using Dilute KOH Solvent,” IEEE Photo. Tech. Lett., 17, pp.2592-2594, 2005
[3.9]S. S. Lo, C. C. Chen, S. C. Hsu and C.-Y Liu, “Fabricating hollow optical waveguide for optical communication application” accepted by IEEE J. MEMS.(SCI, 2004 impact factor: 2.880)
第四章及第五章:
[5.1]R. G. Hunsperger “Integrated Optics: Theory and Technology,” 5th ed (Springer, 2002), Sect. 6.3.
[5.2]K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices: part II-S-shaped channel waveguide bends,” J. Lightwave Tech., 7, pp.1016-1021, 1989.
[5.3]P. L. Liu, B. J. Li, P. J. Cressman, J. R. Debesis, and S. Stoller, “Comparsion of measured losses of Ti:LiNbO3 channel waveguide bends,” IEEE Photon. Tech. Lett., 3, pp.755-756, 1991.
[5.4]蘇振嘉, “同調耦合式大角度彎曲光波導之研製,” 國立臺灣大學電機工程研究所碩士論文, 2001.
[5.5]H. F. Taylor, “Power loss at directional change in dielectric waveguide,” Appl. Opt., 13, pp642-647, 1974.
[5.6]H. F. Taylor, “Losses at corner bends in dielectric waveguides,” Appl. Opt., 16, pp.711-716, 1977.
[5.7]L. M. Johnson and F. J. Leonberger, “Low-loss LiNbO3 waveguide bends with coherent coupling,” Opt. Soc. Am., 8, pp.111-113,1983.
[5.8] J. J. Su and W. S. Wang, “Novel Coherently Coupled Multisectional Bending Optical Waveguide, ” IEEE Photon. Tech. Lett., 14, pp.1112-1114, 2002.
[5.9] C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-Density Integrated Optics,” J. Lightwave Tech., 17, pp.1682-1692, 1999.
[5.10]N. N. Rao, “Elements of Engineering Electromagnetics,” 5th ed. (Prentice Hall, 2000), Sect. 7.2.
[5.11] J. K. Love, “Application of a low-loss criterion to optical waveguide and devices, ” IEE Proc., 136, pp. 225-228, 1989.