跳到主要內容

簡易檢索 / 詳目顯示

研究生: 格維克
Victor Nicolas LE GLANIC
論文名稱: 利用改質石墨烯修飾電極以提高電池在高電壓 下的性能和穩定性
Modification of the current collector with graphene to enhance the performance and stability of batteries at high voltage
指導教授: 蘇清源
SU Ching-Yuan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 55
中文關鍵詞: 儲能鋰離子電池石墨烯防腐奈米材料
外文關鍵詞: energy storage, Li-ion batteries, graphene, anti-corrosion, nanomaterial
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池如今在能量存儲方面得到了廣泛的投資,無論是用於嵌入式設備
    還是固定應用。這些電池在零售市場上擁有最佳的電氣性能。從製造出來的那一刻起,
    日曆和循環老化都會影響鋰離子電池的性能。老化過程的一個重要部分是電流收集器
    的腐蝕,特別是在正極的鋁基底的情況下尤為明顯。一般來說,鋁由於形成了不透水
    的原生氧化鋁膜而能夠抵抗腐蝕。然而,在某些電化學條件下,腐蝕會影響電流收集
    器的界面。這在高壓鋰離子電池的情況下尤為明顯,這些電池更容易受到腐蝕的影響。
    許多防腐策略已被提出。
    以往關於通過電化學剝離法製備的氟化石墨烯(FG)的研究表明,這種氟化
    電化學剝離石墨烯(F-ECG)似乎是一種有希望的疏水材料,可以解決腐蝕問題,同時
    通過石墨烯的獨特性能提高鋁電池電流收集器的電氣性能。本研究展示了應用基於石
    墨烯的材料於能量存儲設備的調查,重點關注負極鋁電池電流收集器。
    其結果展示了石墨烯基材料應用於儲能裝置的研究,重點關注負極鋁電池集
    流體。通過 EPD 在織構鋁箔上逐層塗覆不同結構的保護膜,然後分析其形貌、厚度、
    元素組成以及 LSV 電化學和半電池表徵。結果表明,雙層 F-ECG 500s 和 F-ECG 700s
    EPD 持續時間的特定條件允許達到 1.63V 的電位極限,這表明與其他無塗層鋁蝕刻樣
    品相比,腐蝕保護得到了改善。單層 F-ECG 的半電池測試表明,該結果表明,所提出
    的 Al 上的 FECG 改性劑有助於提高循環穩定性,這為未來高性能 LIB 鋪平了道路.


    Lithium-ion batteries are nowadays widely invested in term of energy storage whether
    for embedded devices or stationary applications. Those batteries have the best electrical
    properties available on the retail market. The unstable cycle stability affects the performance
    of the lithium-ion batteries from the moment they are manufactured. An important process
    that occurs as a part of the ageing is corrosion of the current collectors, especially prominent
    in the case of the aluminum substrate for the positive electrode. Generally, aluminum resists
    corrosion due to the formation of a non-permeable film of native aluminum oxide.
    Nevertheless, at certain electrochemical conditions corrosion affects the interface of the
    current collector. This is especially the case for high-voltage lithium-ion batteries which are
    more affected by the corrosion affect.
    Many strategies of anti-corrosion have been proposed. Previous works on fluorinated
    graphene (FG) obtained by fluorination of the electrochemically exfoliated graphene (F-ECG)
    seems to be a promising hydrophobic material to solve corrosion issue while increasing the
    electrical properties of aluminum batteries current collector thank to graphene unique
    properties.
    This work shows the investigation of graphene-based material applied to energy
    storage devices focusing on the negative aluminum battery current collector. The different iii
    structures of protective film were layer-by-layer coated on the textured Al foil by EPD, then
    we analysis the morphology, thickness, elemental composition and the LSV electrochemical
    as well as the half-cell characterization. Result show that the specific condition of dual layer
    F-ECG 500s and F-ECG 700s EPD duration allows to achieve a potential limit of 1.63V,
    suggesting the improved corrosion protection compared to other non-coated aluminum etched
    sample. The half-cell testing with single layer F-ECG shows that this result shows that the
    proposed FECG modifier on the Al can help to increase the cycling stability, which pay a way
    toward performant LIB in the future.

    Abstract ..................................................................................................................................... ii Table of contents ...................................................................................................................... iv List of figures ........................................................................................................................... vi List of tables ............................................................................................................................vii 1. INTRODUCTION ......................................................................................................... 1 1.1 Graphene/ polymeric nanocomposite as an anticorrosion material on aluminum ....... 3 2. MOTIVATION .............................................................................................................. 5 3. METHODOLOGY ........................................................................................................ 8 3.1 Experimental flow chart .............................................................................................. 8 3.2 Synthesis of electrochemically exfoliated graphene (ECG) ........................................ 8 3.3 Synthesis of Fluorinated electrochemically exfoliated graphene (F-ECG) [23] ............ 9 3.4 Coating the nanocomposite on a metallic substrate [23] ............................................. 10 3.5 Material characterizations .......................................................................................... 11 3.6 Electrochemical characterization ............................................................................... 12 4. RESULTS AND DISCUSSION .................................................................................. 13 4.1 Morphology ............................................................................................................... 13 4.1.1 Cold Field Emission Scanning Electron Microscope (CEF-SEM) images ........ 13 4.1.2 Thickness measurements and roughness of F-ECG coated aluminum foil ........ 16 4.2 Hydrophobicity .......................................................................................................... 19 4.2.1 Contact angle measurements. ............................................................................. 19 4.3 Electrochemical properties......................................................................................... 20 4.3.1 Sheet resistance measurements ........................................................................... 20 4.3.2 XPS analysis - Confirmed presence of FAl3 among F-ECG/Al ........................ 22 4.3.3 Linear sweep voltammetry ................................................................................. 254.3.4 Cyclability .......................................................................................................... 27 4.4 Other discussions ....................................................................................................... 31 4.4.1 Reducing the oxygen side reaction with NH3 annealing doping. ....................... 31 4.4.2 Results on dual-layer coating (F-ECG + ECG) .................................................. 31 4.4.3 Controlling the EPD uniformity over large area ................................................ 34 4.4.4 Improving the Adhesion of ECG Coating on Aluminum Surface ..................... 37 5. CONCLUSION ............................................................................................................ 39 6. REFERENCES ............................................................................................................ 40

    [1]. Hannan, M. A., Wali, S. B., Ker, P. J., Rahman, M. S. A., Mansor, M.,
    Ramachandaramurthy, V. K., Muttaqi, K. M., Mahlia, T. M. I., & Dong, Z. Y. (2021). Battery
    energy-storage system: A review of technologies, optimization objectives, constraints,
    approaches, and outstanding issues. In Journal of Energy Storage (Vol. 42, p. 103023).
    Elsevier BV. https://doi.org/10.1016/j.est.2021.103023
    [2]. Desing, H., & Widmer, R. (2022). How Much Energy Storage can We Afford? On the
    Need for a Sunflower Society, Aligning Demand with Renewable Supply. In Biophysical
    Economics and Sustainability (Vol. 7, Issue 2). Springer Science and Business Media LLC.
    https://doi.org/10.1007/s41247-022-00097-y
    [3]. Mitali, J., Dhinakaran, S., & Mohamad, A. A. (2022). Energy storage systems: a
    review. In Energy Storage and Saving (Vol. 1, Issue 3, pp. 166–216). Elsevier BV.
    https://doi.org/10.1016/j.enss.2022.07.002
    [4]. Grandjean, T. R. B., Groenewald, J., McGordon, A., & Marco, J. (2019). Cycle life of
    lithium ion batteries after flash cryogenic freezing. In Journal of Energy Storage (Vol. 24, p.
    100804). Elsevier BV. https://doi.org/10.1016/j.est.2019.100804
    [5]. Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., & Riu, D. (2013). A
    review on lithium-ion battery ageing mechanisms and estimations for automotive applications.
    In Journal of Power Sources (Vol. 241, pp. 680–689). Elsevier BV.
    https://doi.org/10.1016/j.jpowsour.2013.05.040
    [6]. SONG, S., RICHARDSON, T., ZHUANG, G., DEVINE, T., & EVANS, J. (2004).
    Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte; a study using
    the EQCM. In Electrochimica Acta (Vol. 49, Issues 9–10, pp. 1483–1490). Elsevier BV.
    https://doi.org/10.1016/s0013-4686(03)00930-7
    [7]. Mussa, A. S., Liivat, A., Marzano, F., Klett, M., Philippe, B., Tengstedt, C.,
    Lindbergh, G., Edström, K., Lindström, R. W., & Svens, P. (2019). Fast-charging effects on
    ageing for energy-optimized automotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-
    ion cells. In Journal of Power Sources (Vol. 422, pp. 175–184). Elsevier BV.
    https://doi.org/10.1016/j.jpowsour.2019.02.095
    [8] Tomaszewska, A., Chu, Z., Feng, X., O’Kane, S., Liu, X., Chen, J., Ji, C., Endler, E.,
    Li, R., Liu, L., Li, Y., Zheng, S., Vetterlein, S., Gao, M., Du, J., Parkes, M., Ouyang, M.,
    Marinescu, M., Offer, G., & Wu, B. (2019). Lithium-ion battery fast charging: A review. In
    eTransportation (Vol. 1, p. 100011). Elsevier BV. https://doi.org/10.1016/j.etran.2019.100011
    [9]. Gabryelczyk, A., Ivanov, S., Bund, A., & Lota, G. (2021). Corrosion of aluminium
    current collector in lithium-ion batteries: A review. In Journal of Energy Storage (Vol. 43, p.
    103226). Elsevier BV. https://doi.org/10.1016/j.est.2021.103226
    [10]. Wang, M., Tang, M., Chen, S., Ci, H., Wang, K., Shi, L., Lin, L., Ren, H., Shan, J.,
    Gao, P., Liu, Z., & Peng, H. (2017). Graphene-Armored Aluminum Foil with Enhanced
    Anticorrosion Performance as Current Collectors for Lithium-Ion Battery. In Advanced
    Materials (Vol. 29, Issue 47, p. 1703882). Wiley. https://doi.org/10.1002/adma.201703882
    [11]. Meister, P., Qi, X., Kloepsch, R., Krämer, E., Streipert, B., Winter, M., & Placke, T.
    (2017). Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes:
    Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness. In
    ChemSusChem (Vol. 10, Issue 4, pp. 804–814). Wiley.
    https://doi.org/10.1002/cssc.201601636
    [12]. Perreault, F., Fonseca de Faria, A., & Elimelech, M. (2015). Environmental
    applications of graphene-based nanomaterials. In Chemical Society Reviews (Vol. 44, Issue
    16, pp. 5861–5896). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c5cs00021a
    [13]. Sin, Y.-Y., Huang, C.-C., Lin, C.-N., Chih, J.-K., Hsieh, Y.-L., Tsao, I.-Y., Li, J., &
    Su, C.-Y. (2020). Ultrastrong adhesion of fluorinated graphene on a substrate: In situ
    electrochemical conversion to ionic-covalent bonding at the interface. In Carbon (Vol. 169, pp.
    248–257). Elsevier BV. https://doi.org/10.1016/j.carbon.2020.07.067
    [14]. Guo, Y., Liu, C., Yin, Q., Wei, C., Lin, S., Hoffman, T. B., Zhao, Y., Edgar, J. H.,
    Chen, Q., Lau, S. P., Dai, J., Yao, H., Wong, H.-S. P., & Chai, Y. (2016). Distinctive in-Plane
    Cleavage Behaviors of Two-Dimensional Layered Materials. In ACS Nano (Vol. 10, Issue 9,
    pp. 8980–8988). American Chemical Society (ACS).
    https://doi.org/10.1021/acsnano.6b05063
    [15]. Deng, Y., Bai, W., Chen, J., Zhang, X., Wang, S., Lin, J., & Xu, Y. (2017). Bio-
    inspired electrochemical corrosion coatings derived from graphene/natural lacquer composites.
    In RSC Advances (Vol. 7, Issue 71, pp. 45034–45044). Royal Society of Chemistry (RSC).
    https://doi.org/10.1039/c7ra08536b
    [16]. Sun, W., Wang, L., Wu, T., Wang, M., Yang, Z., Pan, Y., & Liu, G. (2015).
    Inhibiting the Corrosion-Promotion Activity of Graphene. In Chemistry of Materials (Vol. 27,
    Issue 7, pp. 2367–2373). American Chemical Society (ACS).
    https://doi.org/10.1021/cm5043099
    [17]. Zhou, F., Li, Z., Shenoy, G. J., Li, L., & Liu, H. (2013). Enhanced Room-
    Temperature Corrosion of Copper in the Presence of Graphene. In ACS Nano (Vol. 7, Issue 8,
    pp. 6939–6947). American Chemical Society (ACS). https://doi.org/10.1021/nn402150t
    [18]. Dutta, D., Ganda, A. N. F., Chih, J.-K., Huang, C.-C., Tseng, C.-J., & Su, C.-Y.
    (2018). Revisiting graphene–polymer nanocomposite for enhancing anticorrosion
    performance: a new insight into interface chemistry and diffusion model. In Nanoscale (Vol.
    10, Issue 26, pp. 12612–12624). Royal Society of Chemistry (RSC).
    https://doi.org/10.1039/c8nr03261k
    [19]. Jamaluddin, A., Sin, Y.-Y., Adhitama, E., Prayogi, A., Wu, Y.-T., Chang, J.-K., &
    Su, C.-Y. (2022). Fluorinated graphene as a dual-functional anode to achieve dendrite-free
    and high-performance lithium metal batteries. In Carbon (Vol. 197, pp. 141–151). Elsevier
    BV. https://doi.org/10.1016/j.carbon.2022.06.023
    [20]. Kim, S. Y., Song, Y. I., Wee, J.-H., Kim, C. H., Ahn, B. W., Lee, J. W., Shu, S. J.,
    Terrones, M., Kim, Y. A., & Yang, C.-M. (2019). Few-layer graphene coated current
    collectors for safe and powerful lithium ion batteries. In Carbon (Vol. 153, pp. 495–503).
    Elsevier BV. https://doi.org/10.1016/j.carbon.2019.07.032
    43
    [21]. Su CY, Lu AY, Xu Y, Chen FR, Khlobystov AN, Li LJ. High-quality thin graphene
    films from fast electrochemical exfoliation. ACS Nano. 2011 Mar 22;5(3):2332-9. doi:
    10.1021/nn200025p. Epub 2011 Feb 10. PMID: 21309565.
    [22]. Chen, C.-H., Yang, S.-W., Chuang, M.-C., Woon, W.-Y., & Su, C.-Y. (2015).
    Towards the continuous production of high crystallinity graphene via electrochemical
    exfoliation with molecular in situ encapsulation. In Nanoscale (Vol. 7, Issue 37, pp. 15362–
    15373). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c5nr03669
    [23]. Arshad, M. U., Dutta, D., Sin, Y. Y., Hsiao, S. W., Wu, C. Y., Chang, B. K., Dai, L.,
    & Su, C. Y. (2022). Multi-functionalized fluorinated graphene composite coating for
    achieving durable electronics: Ultralow corrosion rate and high electrical insulating
    passivation. In Carbon (Vol. 195, pp. 141–153). Elsevier BV.
    https://doi.org/10.1016/j.carbon.2022.04.004
    [24]. Song, C., Yu, B., Wang, M., & Qian, L. (2015). Rapid and maskless nanopatterning
    of aluminosilicate glass surface via friction-induced selective etching in HF solution. In RSC
    Advances (Vol. 5, Issue 97, pp. 79964–79968). Royal Society of Chemistry (RSC).
    https://doi.org/10.1039/c5ra13049b
    [25]. Ogoreltceva, N., Fedorova, E., Puzanov, I., Zavadyak, A., Nagibin, G., & Kirillova, I.
    (2020). Method of protection of cathode blocks of aluminium electrolysis cells. In Procedia
    Structural Integrity (Vol. 28, pp. 1340–1346). Elsevier BV.
    https://doi.org/10.1016/j.prostr.2020.10.105
    [26]. Asakura, K., Shimomura, M., & Shodai, T. (2003). Study of life evaluation methods
    for Li-ion batteries for backup applications. In Journal of Power Sources (Vols. 119–121, pp.
    902–905). Elsevier BV. https://doi.org/10.1016/s0378-7753(03)00208-8
    [27]. Li, X., Deng, S., Banis, M. N., Doyle-Davis, K., Zhang, D., Zhang, T., Yang, J.,
    Divigalpitiya, R., Brandys, F., Li, R., & Sun, X. (2019). Suppressing Corrosion of Aluminum
    Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-
    Based Batteries. In ACS Applied Materials & Interfaces (Vol. 11, Issue 36, pp. 32826–
    32832). American Chemical Society (ACS). https://doi.org/10.1021/acsami.9b06442
    44
    [28]. Lee, Young-Gi, Kim, Kwang Man, Cho, Won Il, & Ko, Jang Myoun. (2013).
    Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based
    Electrolytes by the Addition of Fumed Silica. Bulletin of the Korean Chemical Society, 34(6),
    1795–1799. https://doi.org/10.5012/BKCS.2013.34.6.1795
    [29]. Gromadskyi, D. G., Fateev, Y. F., & Maletin, Y. A. (2013). The impact of aluminum
    electrode anodic polarization in tetraethylammonium tetrafluoborate acetonitrile solution on
    the process of film formation. In Corrosion Science (Vol. 69, pp. 191–196). Elsevier BV.
    https://doi.org/10.1016/j.corsci.2012.12.002
    [30]. Wang, K., Wang, C., Yang, H., Wang, X., Cao, F., Wu, Q., & Peng, H. (2020).
    Vertical graphene nanosheetsmodified Al current collectors for high-performance sodium-ion
    batteries. In Nano Research (Vol. 13, Issue 7, pp. 1948–1954). Springer Science and Business
    Media LLC. https://doi.org/10.1007/s12274-020-2780-2

    QR CODE
    :::