| 研究生: |
格維克 Victor Nicolas LE GLANIC |
|---|---|
| 論文名稱: |
利用改質石墨烯修飾電極以提高電池在高電壓 下的性能和穩定性 Modification of the current collector with graphene to enhance the performance and stability of batteries at high voltage |
| 指導教授: |
蘇清源
SU Ching-Yuan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 儲能 、鋰離子電池 、石墨烯 、防腐 、奈米材料 |
| 外文關鍵詞: | energy storage, Li-ion batteries, graphene, anti-corrosion, nanomaterial |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子電池如今在能量存儲方面得到了廣泛的投資,無論是用於嵌入式設備
還是固定應用。這些電池在零售市場上擁有最佳的電氣性能。從製造出來的那一刻起,
日曆和循環老化都會影響鋰離子電池的性能。老化過程的一個重要部分是電流收集器
的腐蝕,特別是在正極的鋁基底的情況下尤為明顯。一般來說,鋁由於形成了不透水
的原生氧化鋁膜而能夠抵抗腐蝕。然而,在某些電化學條件下,腐蝕會影響電流收集
器的界面。這在高壓鋰離子電池的情況下尤為明顯,這些電池更容易受到腐蝕的影響。
許多防腐策略已被提出。
以往關於通過電化學剝離法製備的氟化石墨烯(FG)的研究表明,這種氟化
電化學剝離石墨烯(F-ECG)似乎是一種有希望的疏水材料,可以解決腐蝕問題,同時
通過石墨烯的獨特性能提高鋁電池電流收集器的電氣性能。本研究展示了應用基於石
墨烯的材料於能量存儲設備的調查,重點關注負極鋁電池電流收集器。
其結果展示了石墨烯基材料應用於儲能裝置的研究,重點關注負極鋁電池集
流體。通過 EPD 在織構鋁箔上逐層塗覆不同結構的保護膜,然後分析其形貌、厚度、
元素組成以及 LSV 電化學和半電池表徵。結果表明,雙層 F-ECG 500s 和 F-ECG 700s
EPD 持續時間的特定條件允許達到 1.63V 的電位極限,這表明與其他無塗層鋁蝕刻樣
品相比,腐蝕保護得到了改善。單層 F-ECG 的半電池測試表明,該結果表明,所提出
的 Al 上的 FECG 改性劑有助於提高循環穩定性,這為未來高性能 LIB 鋪平了道路.
Lithium-ion batteries are nowadays widely invested in term of energy storage whether
for embedded devices or stationary applications. Those batteries have the best electrical
properties available on the retail market. The unstable cycle stability affects the performance
of the lithium-ion batteries from the moment they are manufactured. An important process
that occurs as a part of the ageing is corrosion of the current collectors, especially prominent
in the case of the aluminum substrate for the positive electrode. Generally, aluminum resists
corrosion due to the formation of a non-permeable film of native aluminum oxide.
Nevertheless, at certain electrochemical conditions corrosion affects the interface of the
current collector. This is especially the case for high-voltage lithium-ion batteries which are
more affected by the corrosion affect.
Many strategies of anti-corrosion have been proposed. Previous works on fluorinated
graphene (FG) obtained by fluorination of the electrochemically exfoliated graphene (F-ECG)
seems to be a promising hydrophobic material to solve corrosion issue while increasing the
electrical properties of aluminum batteries current collector thank to graphene unique
properties.
This work shows the investigation of graphene-based material applied to energy
storage devices focusing on the negative aluminum battery current collector. The different iii
structures of protective film were layer-by-layer coated on the textured Al foil by EPD, then
we analysis the morphology, thickness, elemental composition and the LSV electrochemical
as well as the half-cell characterization. Result show that the specific condition of dual layer
F-ECG 500s and F-ECG 700s EPD duration allows to achieve a potential limit of 1.63V,
suggesting the improved corrosion protection compared to other non-coated aluminum etched
sample. The half-cell testing with single layer F-ECG shows that this result shows that the
proposed FECG modifier on the Al can help to increase the cycling stability, which pay a way
toward performant LIB in the future.
[1]. Hannan, M. A., Wali, S. B., Ker, P. J., Rahman, M. S. A., Mansor, M.,
Ramachandaramurthy, V. K., Muttaqi, K. M., Mahlia, T. M. I., & Dong, Z. Y. (2021). Battery
energy-storage system: A review of technologies, optimization objectives, constraints,
approaches, and outstanding issues. In Journal of Energy Storage (Vol. 42, p. 103023).
Elsevier BV. https://doi.org/10.1016/j.est.2021.103023
[2]. Desing, H., & Widmer, R. (2022). How Much Energy Storage can We Afford? On the
Need for a Sunflower Society, Aligning Demand with Renewable Supply. In Biophysical
Economics and Sustainability (Vol. 7, Issue 2). Springer Science and Business Media LLC.
https://doi.org/10.1007/s41247-022-00097-y
[3]. Mitali, J., Dhinakaran, S., & Mohamad, A. A. (2022). Energy storage systems: a
review. In Energy Storage and Saving (Vol. 1, Issue 3, pp. 166–216). Elsevier BV.
https://doi.org/10.1016/j.enss.2022.07.002
[4]. Grandjean, T. R. B., Groenewald, J., McGordon, A., & Marco, J. (2019). Cycle life of
lithium ion batteries after flash cryogenic freezing. In Journal of Energy Storage (Vol. 24, p.
100804). Elsevier BV. https://doi.org/10.1016/j.est.2019.100804
[5]. Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., & Riu, D. (2013). A
review on lithium-ion battery ageing mechanisms and estimations for automotive applications.
In Journal of Power Sources (Vol. 241, pp. 680–689). Elsevier BV.
https://doi.org/10.1016/j.jpowsour.2013.05.040
[6]. SONG, S., RICHARDSON, T., ZHUANG, G., DEVINE, T., & EVANS, J. (2004).
Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte; a study using
the EQCM. In Electrochimica Acta (Vol. 49, Issues 9–10, pp. 1483–1490). Elsevier BV.
https://doi.org/10.1016/s0013-4686(03)00930-7
[7]. Mussa, A. S., Liivat, A., Marzano, F., Klett, M., Philippe, B., Tengstedt, C.,
Lindbergh, G., Edström, K., Lindström, R. W., & Svens, P. (2019). Fast-charging effects on
ageing for energy-optimized automotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-
ion cells. In Journal of Power Sources (Vol. 422, pp. 175–184). Elsevier BV.
https://doi.org/10.1016/j.jpowsour.2019.02.095
[8] Tomaszewska, A., Chu, Z., Feng, X., O’Kane, S., Liu, X., Chen, J., Ji, C., Endler, E.,
Li, R., Liu, L., Li, Y., Zheng, S., Vetterlein, S., Gao, M., Du, J., Parkes, M., Ouyang, M.,
Marinescu, M., Offer, G., & Wu, B. (2019). Lithium-ion battery fast charging: A review. In
eTransportation (Vol. 1, p. 100011). Elsevier BV. https://doi.org/10.1016/j.etran.2019.100011
[9]. Gabryelczyk, A., Ivanov, S., Bund, A., & Lota, G. (2021). Corrosion of aluminium
current collector in lithium-ion batteries: A review. In Journal of Energy Storage (Vol. 43, p.
103226). Elsevier BV. https://doi.org/10.1016/j.est.2021.103226
[10]. Wang, M., Tang, M., Chen, S., Ci, H., Wang, K., Shi, L., Lin, L., Ren, H., Shan, J.,
Gao, P., Liu, Z., & Peng, H. (2017). Graphene-Armored Aluminum Foil with Enhanced
Anticorrosion Performance as Current Collectors for Lithium-Ion Battery. In Advanced
Materials (Vol. 29, Issue 47, p. 1703882). Wiley. https://doi.org/10.1002/adma.201703882
[11]. Meister, P., Qi, X., Kloepsch, R., Krämer, E., Streipert, B., Winter, M., & Placke, T.
(2017). Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes:
Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness. In
ChemSusChem (Vol. 10, Issue 4, pp. 804–814). Wiley.
https://doi.org/10.1002/cssc.201601636
[12]. Perreault, F., Fonseca de Faria, A., & Elimelech, M. (2015). Environmental
applications of graphene-based nanomaterials. In Chemical Society Reviews (Vol. 44, Issue
16, pp. 5861–5896). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c5cs00021a
[13]. Sin, Y.-Y., Huang, C.-C., Lin, C.-N., Chih, J.-K., Hsieh, Y.-L., Tsao, I.-Y., Li, J., &
Su, C.-Y. (2020). Ultrastrong adhesion of fluorinated graphene on a substrate: In situ
electrochemical conversion to ionic-covalent bonding at the interface. In Carbon (Vol. 169, pp.
248–257). Elsevier BV. https://doi.org/10.1016/j.carbon.2020.07.067
[14]. Guo, Y., Liu, C., Yin, Q., Wei, C., Lin, S., Hoffman, T. B., Zhao, Y., Edgar, J. H.,
Chen, Q., Lau, S. P., Dai, J., Yao, H., Wong, H.-S. P., & Chai, Y. (2016). Distinctive in-Plane
Cleavage Behaviors of Two-Dimensional Layered Materials. In ACS Nano (Vol. 10, Issue 9,
pp. 8980–8988). American Chemical Society (ACS).
https://doi.org/10.1021/acsnano.6b05063
[15]. Deng, Y., Bai, W., Chen, J., Zhang, X., Wang, S., Lin, J., & Xu, Y. (2017). Bio-
inspired electrochemical corrosion coatings derived from graphene/natural lacquer composites.
In RSC Advances (Vol. 7, Issue 71, pp. 45034–45044). Royal Society of Chemistry (RSC).
https://doi.org/10.1039/c7ra08536b
[16]. Sun, W., Wang, L., Wu, T., Wang, M., Yang, Z., Pan, Y., & Liu, G. (2015).
Inhibiting the Corrosion-Promotion Activity of Graphene. In Chemistry of Materials (Vol. 27,
Issue 7, pp. 2367–2373). American Chemical Society (ACS).
https://doi.org/10.1021/cm5043099
[17]. Zhou, F., Li, Z., Shenoy, G. J., Li, L., & Liu, H. (2013). Enhanced Room-
Temperature Corrosion of Copper in the Presence of Graphene. In ACS Nano (Vol. 7, Issue 8,
pp. 6939–6947). American Chemical Society (ACS). https://doi.org/10.1021/nn402150t
[18]. Dutta, D., Ganda, A. N. F., Chih, J.-K., Huang, C.-C., Tseng, C.-J., & Su, C.-Y.
(2018). Revisiting graphene–polymer nanocomposite for enhancing anticorrosion
performance: a new insight into interface chemistry and diffusion model. In Nanoscale (Vol.
10, Issue 26, pp. 12612–12624). Royal Society of Chemistry (RSC).
https://doi.org/10.1039/c8nr03261k
[19]. Jamaluddin, A., Sin, Y.-Y., Adhitama, E., Prayogi, A., Wu, Y.-T., Chang, J.-K., &
Su, C.-Y. (2022). Fluorinated graphene as a dual-functional anode to achieve dendrite-free
and high-performance lithium metal batteries. In Carbon (Vol. 197, pp. 141–151). Elsevier
BV. https://doi.org/10.1016/j.carbon.2022.06.023
[20]. Kim, S. Y., Song, Y. I., Wee, J.-H., Kim, C. H., Ahn, B. W., Lee, J. W., Shu, S. J.,
Terrones, M., Kim, Y. A., & Yang, C.-M. (2019). Few-layer graphene coated current
collectors for safe and powerful lithium ion batteries. In Carbon (Vol. 153, pp. 495–503).
Elsevier BV. https://doi.org/10.1016/j.carbon.2019.07.032
43
[21]. Su CY, Lu AY, Xu Y, Chen FR, Khlobystov AN, Li LJ. High-quality thin graphene
films from fast electrochemical exfoliation. ACS Nano. 2011 Mar 22;5(3):2332-9. doi:
10.1021/nn200025p. Epub 2011 Feb 10. PMID: 21309565.
[22]. Chen, C.-H., Yang, S.-W., Chuang, M.-C., Woon, W.-Y., & Su, C.-Y. (2015).
Towards the continuous production of high crystallinity graphene via electrochemical
exfoliation with molecular in situ encapsulation. In Nanoscale (Vol. 7, Issue 37, pp. 15362–
15373). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c5nr03669
[23]. Arshad, M. U., Dutta, D., Sin, Y. Y., Hsiao, S. W., Wu, C. Y., Chang, B. K., Dai, L.,
& Su, C. Y. (2022). Multi-functionalized fluorinated graphene composite coating for
achieving durable electronics: Ultralow corrosion rate and high electrical insulating
passivation. In Carbon (Vol. 195, pp. 141–153). Elsevier BV.
https://doi.org/10.1016/j.carbon.2022.04.004
[24]. Song, C., Yu, B., Wang, M., & Qian, L. (2015). Rapid and maskless nanopatterning
of aluminosilicate glass surface via friction-induced selective etching in HF solution. In RSC
Advances (Vol. 5, Issue 97, pp. 79964–79968). Royal Society of Chemistry (RSC).
https://doi.org/10.1039/c5ra13049b
[25]. Ogoreltceva, N., Fedorova, E., Puzanov, I., Zavadyak, A., Nagibin, G., & Kirillova, I.
(2020). Method of protection of cathode blocks of aluminium electrolysis cells. In Procedia
Structural Integrity (Vol. 28, pp. 1340–1346). Elsevier BV.
https://doi.org/10.1016/j.prostr.2020.10.105
[26]. Asakura, K., Shimomura, M., & Shodai, T. (2003). Study of life evaluation methods
for Li-ion batteries for backup applications. In Journal of Power Sources (Vols. 119–121, pp.
902–905). Elsevier BV. https://doi.org/10.1016/s0378-7753(03)00208-8
[27]. Li, X., Deng, S., Banis, M. N., Doyle-Davis, K., Zhang, D., Zhang, T., Yang, J.,
Divigalpitiya, R., Brandys, F., Li, R., & Sun, X. (2019). Suppressing Corrosion of Aluminum
Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-
Based Batteries. In ACS Applied Materials & Interfaces (Vol. 11, Issue 36, pp. 32826–
32832). American Chemical Society (ACS). https://doi.org/10.1021/acsami.9b06442
44
[28]. Lee, Young-Gi, Kim, Kwang Man, Cho, Won Il, & Ko, Jang Myoun. (2013).
Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based
Electrolytes by the Addition of Fumed Silica. Bulletin of the Korean Chemical Society, 34(6),
1795–1799. https://doi.org/10.5012/BKCS.2013.34.6.1795
[29]. Gromadskyi, D. G., Fateev, Y. F., & Maletin, Y. A. (2013). The impact of aluminum
electrode anodic polarization in tetraethylammonium tetrafluoborate acetonitrile solution on
the process of film formation. In Corrosion Science (Vol. 69, pp. 191–196). Elsevier BV.
https://doi.org/10.1016/j.corsci.2012.12.002
[30]. Wang, K., Wang, C., Yang, H., Wang, X., Cao, F., Wu, Q., & Peng, H. (2020).
Vertical graphene nanosheetsmodified Al current collectors for high-performance sodium-ion
batteries. In Nano Research (Vol. 13, Issue 7, pp. 1948–1954). Springer Science and Business
Media LLC. https://doi.org/10.1007/s12274-020-2780-2