| 研究生: |
陳哲緯 Jhe-Wei Chen |
|---|---|
| 論文名稱: |
添加硝酸鋅之PEDOT:PSS膜作為高效率反式錫鈣鈦礦太陽能電池電洞傳遞層 |
| 指導教授: |
吳春桂
Chun-Guey Wu 江建宏 Chien-Hung Chiang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 錫鈣鈦礦 、太陽能電池 |
| 外文關鍵詞: | tin perovskite, solar cell |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
錫鈣鈦礦(Tin Perovskite,簡稱TPsk)具有較鉛鈣鈦礦毒性低、載子遷移率高的特性,且錫鈣鈦礦能隙接近 Shockley-Queisser limit 所需具備的吸光層能隙(~ 1.34 eV ) ,因此錫鈣鈦礦太陽能電池之研究受科學家重視。反式錫鈣鈦礦太陽能電池(Tin Perovskite solar cells,簡稱TPSCs)最常使用的電洞傳遞層(HTL)為PEDOT:PSS,然而PEDOT:PSS膜的work function (-5.15 eV) 與FA0.98EDA0.01SnI3的valence band (-5.84 eV)能階差大,且PEDOT:PSS膜的電洞遷移率僅大約10-4 cm2V-1s-1,仍有改善的空間。本研究嘗試在PEDOT:PSS 中加入硝酸鋅(Zn(NO3)2)作為電洞傳遞層,Zn2+會與PSS-有交互作用,使導電的 PEDOT 鏈與不導電的 PSS 鏈分離並舒張 PEDOT 鏈,增加 PEDOT:PSS 膜的電洞遷移率,有摻雜Zn(NO3)2之PEDOT:PSS膜電洞遷移率由1.710-4 cm2V-1s-1增加至2.8*10-4 cm2V-1s-1 ,使組裝之元件的 Jsc 值可由 22.99 mA/cm2 提升至 25.92 mA/cm2。且摻雜Zn(NO3)2降低PEDOT:PSS膜之work function,使HTL與錫鈣鈦礦層能階差變小,組裝之元件的Voc值由0.55 V增加至0.58 V。以摻雜硝酸鋅之PEDOT:PSS膜作為電洞傳遞層所組裝之元件的光電轉換效率可達 10.60%;而以 PEDOT:PSS 膜作為電洞傳遞層之元件的光電轉換效率僅有8.66%。另外,放置在手套箱中不照光的條件下2200小時後,摻雜硝酸鋅之PEDOT:PSS膜作為電洞傳遞層所組裝之元件的光電轉換效率仍可維持原來的94%,而以 PEDOT:PSS 膜作為電洞傳遞層之元件在相同測試條件下,光電轉換效率僅維持原來的88%。
Tin Perovskite (TPsk) has the characteristics of lower toxicity, higher carrier mobility and ideal band gap which is close to of the light-absorbing layer required by the Shockley-Queisser limit (~ 1.34 eV). These are some reasons that tin perovskite solar cells have attracted the scientists' attention. The most commonly used hole transport layer (HTL) for Tin Perovskite solar cells (TPSCs) is PEDOT:PSS. However, there is a mismatch energy level between the work function of PEDOT:PSS film (-5.15 eV) and the valence band of TPsk (FA0.98EDA0.01SnI3 (-5.84 eV) used in this study), and the hole mobility of PEDOT:PSS film is only about 10-4 cm2V-1s-1, having a space to improve. In this study, we tried to add zinc nitrate (Zn(NO3)2) into PEDOT:PSS to be a HTL for TPSCs. Zn2+ can interact with the SO3- on PSS, thus separate the more conducting PEDOT chains from the less conducting PSS chains and relax the PEDOT chain simultaneously to increase the hole mobility of the PEDOT:PSS film. The hole mobility of the PEDOT:PSS film doped with Zn(NO3)2 is 2.8×10-4 cm2V-1s-1 (higher than that (1.7×10-4 cm2V-1s-1) of non-doped PEDOT:PSS), and the Jsc value of the corresponding TPSCs is 25.92 mA/cm2 which is also larger than that (22.99 mA/cm2) of the cell based on non-doped PEDOT:PSS HTL. In addition, doping PEDOT:PSS with Zn(NO3)2 reduces the work function of the PEDOT:PSS to match better the valence band of TPsk absorber. As a result, the Voc (0.58 V) of the TPSCs used doped HTL also increases (0.55 V for TPSC based undoped PEDOT:PSS HTL). The power conversion efficiency (PCE) of the devices based on Zn(NO3)2@PS as HTL achieved the highest value of 10.60%, while the PCE of the device based on PEDOT:PSS HTL is only 8.66%. Cell based on Zn(NO3)2@PS HTL can maintain 94% of the initial PCE when the devices were placed in the glove box in dark without packing for 2200 hours, while the PCE of the device based on PEDOT:PSS HTL losts 12% of its initial PCE under the same test condition.
[1]Minjin Kim, Jaeki Jeong, Haizhou Lu, Tae Kyung Lee, Felix T. Eickemeyer, Yuhang Liu, In Woo Choi, Seung Ju Choi, Yimhyun Jo, Hak-Beom Kim, Sung-In Mo, Young-Ki Kim, Heunjeong Lee, Na Gyeong An, Shinuk Cho, Wolfgang R. Tress, Shaik M. Zakeeruddin, Anders Hagfeldt, Jin Young Kim, Michael Grätzel, Dong Suk Kim. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375, 302-306
[2]Bin-Bin Yu, Zhenhua Chen, Yudong Zhu, Yiyu Wang, Bing Han, Guocong Chen, Xusheng Zhang, Zheng Du, Zhubing He. Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%. Adv. Mater., 2021, 33, 2102055-2102064
[3]Hongki Kim, Yoon Ho Lee, Taecheon Lyu, Jong Heun Yoo, Taiho Park , Joon Hak Oh. Boosting the performance and stability of quasi-twodimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive. J. Mater. Chem. A, 2018, 6, 18173-18182
[4]Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang, Mercouri G. Kanatzidis. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photon., 2014, 8, 489-494
[5]Mulmudi Hemant Kumar, Sabba Dharani, Wei Lin Leong, Pablo P. Boix, Rajiv Ramanujam Prabhakar, Tom Baikie, Chen Shi, Hong Ding, Ramamoorthy Ramesh, Mark Asta, Michael Graetzel, Subodh G. Mhaisalkar, Nripan Mathews. Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Adv. Mater., 2014, 26, 7122-7127
[6]Seon Joo Lee, Seong Sik Shin, Young Chan Kim, Dasom Kim, Tae Kyu Ahn, Jun Hong Noh, Jangwon Seo, Sang Il Seok. Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex. J. Am. Chem. Soc., 2016, 138, 12, 3974-3977
[7]Zonglong Zhu, Chu-Chen Chueh, Nan Li, Chengyi Mao, Alex K.-Y. Jen. Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Adv. Mater., 2017, 1703800
[8]Xiangyue Meng, Tianhao Wu, Xiao Liu, Xin He, Takeshi Noda, Yanbo Wang, Hiroshi Segawa, Liyuan Han. Highly Reproducible and Efficient FASnI3 Perovskite Solar Cells Fabricated with Volatilizable Reducing Solvent. J. Phys. Chem. Lett, 2020, 11, 2965-2971
[9]Lijun Hu, Kuan Sun, Ming Wang, Wei Chen, Bo Yang, Jiehao Fu, Zhuang Xiong, Xinyi Li,Xiaosheng Tang, Zhigang Zang, Shupeng Zhang, Lidong Sun, Meng Li. Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS. ACS Appl. Mater. Interfaces, 2017, 9, 43902−43909
[10]Xiao Liu, Yanbo Wang, Fengxian Xie, Xudong Yang, Liyuan Han. Improving the Performance of Inverted Formamidinium Tin Iodide Perovskite Solar Cells by Reducing the Energy-Level Mismatch. ACS Energy Lett.,2018, 3, 1116−1121
[11]Yu Wang, Yao Hu, Dongwei Han, Quan Yuan, Tiantian Cao, Ning Chen, Dongying Zhou, Hailin Cong, Lai Feng. Ammonia-treated graphene oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability. Org. Electron., 2019, 70, 63−70
[12]Falin Wu, Pengcheng Li, Kuan Sun, Yongli Zhou, Wei Chen, Jiehao Fu, Meng Li, Shirong Lu, Dongshan Wei, Xiaosheng Tang, Zhigang Zang, Lidong Sun, Xixia Liu, Jianyong Ouyang. Conductivity Enhancement of PEDOT:PSS via Addition of Chloroplatinic Acid and Its Mechanism. Adv. Electron. Mater., 2017, 3, 1700047
[13]Hamed Moeini Alishah, Fatma Pinar Gokdemir Choi, Furkan Kuruoglu, Ayse Erol, Serap Gunes. Improvement of fill factor by the utilization of Zn-doped PEDOT:PSS hole-transport layers for p-i-n planar type of perovskite solar cells. Electrochimica Acta , 2021, 388 , 138658−138669
[14]Changbong Yeon, Sun Jin Yun, Jumi Kim, Jung Wook Lim. PEDOT:PSS Films with Greatly Enhanced Conductivity via Nitric Acid Treatment at Room Temperature and Their Application as Pt/TCO-Free Counter Electrodes in Dye-Sensitized Solar Cells. Adv. Electron. Mater., 2015, 1, 1500121−1500128
[15]Grzegorz Greczynski, Th J. Kugler, Matthias Keil, Wojciech Osikowicz, Mats Fahlman, William R. Salaneck. Photoelectron spectroscopy of thin films of PEDOT–PSS conjugated polymer blend: a mini-review and some new results. J. Electron Spectrosc. Relat. Phenom., 2001, 121, 1−17
[16]Fei Wu, Kangrong Yan, Haotian Wu, Benfang Niu, Zhixin Liu, Yaokai Li, Lijian Zuo, Hongzheng Chen. Tuning interfacial chemical interaction for highperformance perovskite solar cell with PEDOT:PSS as hole transporting layer. J. Mater. Chem. A, 2021, 9, 14920−14927
[17]Severin N. Habisreutinger, Nakita K. Noel, Henry J. Snaith. Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells. ACS Energy Lett., 2018, 3, 2472−2476
[18]Syed A. Moiz, Iqbal. A. Khan, Waheed A. Younis, Khasan S. Karimov. SpaceCharge−Limited Current Model for Polymers. Conduct. Polym., 2016, 5, 91−117
[19]Zhebo Chen, Todd G. Deutsch, Huyen N. Dinh, Kazunari Domen. Incident Photon-to-Current Efficiency and Photocurrent Spectroscopy. Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, 2013, 7
[20]Xavier Crispin, S. Marciniak, Wojciech Osikowicz, Georg Zotti, A. W. Denier van der Gon, Frank Louwet, Mats Fahlman, Lambertus Bert Groenendaal, Fabien De Schryver, William R. Salaneck. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)–poly(styrene sulfonate): A photoelectron spectroscopy study. J. Polym. Sci., Part B , 2003, 41, 2561−2583
[21]S.K.M. Jönsson, Jonas Birgerson, Xavier Crispin, Grzegorz Greczynski, Wojciech Osikowicz, A.W. Denier van der Gon, William R. Salaneck, Mats Fahlman. The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synthetic Metals, 2003, 139, 1–10
[22]Yingchu Chen, Jie Shi, Xitao Li, Siqi Li, Xinding Lv, Xiangnan Sun, Yan-Zhen Zheng, Xia Tao. A universal strategy combining interface and grain boundary engineering for negligible hysteresis and high efficiency (21.41%) planar perovskite solar cells. J. Mater. Chem. A , 2020, 8, 6349–6359
[23]Steven A. Rutledge and Amr S. Helmy. Carrier mobility enhancement inpoly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergonerapid thermal annealing. J. Appl. Phys., 2013, 114, 133708–133712
[24]Richard H. Bube. Trap Density Determination by Space‐Charge‐Limited Currents. J. Appl. Phys., 1962, 33, 1733–1737
[25]Cong Liu, Jin Tu, Xiaotian Hu, Zengqi Huang, Xiangchuan Meng, Jia Yang, Xiaopeng Duan, Licheng Tan, Zhen Li, Yiwang Chen. Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability. Adv. Funct. Mater., 2019, 29, 1808059–1808067
[26]Jan Obrzut and Kirt A. Page. Electrical conductivity and relaxation in poly(3-hexylthiophene). Phys. Rev. B, 2009, 80, 195211–195217
[27]Hisao Ishii, Kiyoshi Sugiyama, Eisuke Ito, Kazuhiko Seki. Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces. Adv. Mater., 1999, 11, 605–625
[28]Veenstra, Siegfried Christiaan. Energy level alignment at metal/organic and organic/organic interfaces. Electronic structure of molecular systems: from gas phase to thin films to devices, 2002, 5
[29]Udo Lang, Elisabeth Müller, Nicola Naujoks, Jurg Dual. Microscopical Investigations of PEDOT:PSS Thin Films. Adv. Funct. Mater., 2009, 19, 1215–1220
[30]Jung Kyu Kim, Sang Jin Kim, Myung Jin Park, Sukang Bae, Sung-Pyo Cho, Qing Guo Du, Dong Hwan Wang, Jong Hyeok Park, Byung Hee Hong. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics. Sci. Rep., 2015, 5, 14276–14285
[31]Ehsan Hosseini, Vinayaraj Ozhukil Kollath, Kunal Karan. The key mechanism of conductivity in PEDOT:PSS thin films exposed by anomalous conduction behaviour upon solvent-doping and sulfuric acid post-treatment. J. Mater. Chem. C, 2020, 8, 3982–3990
[32]Nara Kim, Byoung Hoon Lee, Doowhan Choi, Geunjin Kim, Heejoo Kim, Jae-Ryoung Kim, Jongjin Lee, Yung Ho Kahng, Kwanghee Lee. Role of Interchain Coupling in the Metallic State of Conducting Polymers. Phys. Rev. Lett., 2012, 109, 106405–106409
[33]Ziji Liu, Hualin Zheng, Detao Liu, Zhiqing Liang, Wenyao Yang, Hao Chen, Long Ji, Shihao Yuan, Yiding Gu, Shibin Li. Controllable Two-dimensional Perovskite Crystallization via Water Additive for Highperformance Solar Cells. Nanoscale Res. Lett., 2020, 15, 108–115
[34]Ziran Zhao, Feidan Gu, Yunlong Li, Weihai Sun, Senyun Ye, Haixia Rao, Zhiwei Liu, Zuqiang Bian, Chunhui Huang. Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. Adv. Sci., 2017, 4, 1700204–170020