跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃原裕
Yuan-yu Huang
論文名稱: 傳統與微坡等低溫水熱方式合成鈦酸鋇的因素探討
Factors on Low Temperature Synthesis of fine BaTiO3 by Conventional and Microwave heating
指導教授: 蔣孝澈
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 64
中文關鍵詞: 低溫材料
外文關鍵詞: microwave
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 將預先合成之氫氧化鈦與氫氧化鋇使用濕式加熱法於低於100度C下合成出鈦酸鋇粉體。兩種不同的加熱方式,傳統加熱和微波加熱。由RAMAN分析可以知道我們的粉體是tetragonal相的鈦酸鋇。由XRD上觀察到的晶粒尺寸為20nm。濕式加熱法配合均質機加熱或微波,生成的鈦酸鋇可以穩定懸浮於IPA和酒精中。利用珠磨系統後可以使粒子尺寸更為均一。我們也使用內標法來計算我們的結晶產率,發現了最好合成完全結晶的鈦酸鋇方式。


    Ultra-fine BaTiO3 powders were synthesized from the wet synthesis of Ba(OH)2.8H2O and freshly prepared titanium hydroxide at less than 100°C. Two different heating schemes, the conventional and the microwave, were employed. The Raman analysis suggested that the particles are tetragonal BaTiO3. The XRD analysis the grain size by Scherrer equation is about 20nm. With the help of homogenizer or microwave in wet conventional heating step, the produced BaTiO3 can be colloid in IPA, ethanol in a long time without precipitation. and using wet bead milling to uniform the particle size. We also use internal standard in XRD analysis to discuss the crystallinity, and we use it to find which process is better to produce BaTiO3.

    摘要 I ABSTRACT II 致謝 III - TABLE OF CONTENTS – IV - LIST OF FIGURES – VI 1. INTRODUCTION 1 1.1 RESEARCH BACKGROUND 1 1.2 BASIC PROPERTIES OF FERROELECTRIC MATERIALS 2 1.3 MICROWAVE SYNTHESIS 7 1.4 THE INTERACTION OF MICROWAVE AND MATERIAL 9 1.5 THE THEORY ABOUT FORMATION BATIO3 9 1.6 MICROWAVE SYNTHESIS 15 1.7 SURFACE MODIFICATION 17 2. WET SYNTHESIS OF BATIO3 21 2.1.1 Raw materials and Experimental Processing 21 2.2 CHARACTERIZATIONS 25 3. RESULTS AND DISCUSSIONS 28 3.1 THE CHOICE OF TITANIUM AND BARIUM SOURCES 28 3.2 THE CHARACTERISTIC OF BARIUM TITANATE CRYSTALS 30 3.3 THE DISSOLUBILITY OF BARIUM HYDROXIDE 31 3.4 ESTABLISH THE CALIBRATION LINE WITH CRYSTALLINITY 33 3.5 THE WET SYNTHESIS OF BARIUM TITANATE 38 3.5.1 Conventional heating 38 3.5.2 Microwave heating 40 3.6 BEAD MILLING 42 4. SUMMARY 47 REFERENCE 49

    [1] A. Moulson and J. Herbert, Electroceramics: Wiley Online Library, 1988.
    [2] 吳朗, 電子材料, 1997.
    [3] S. Lee, C. A. Randall, and Z. K. Liu, "Modified Phase Diagram for the Barium Oxide–Titanium Dioxide System for the Ferroelectric Barium Titanate," Journal of the American Ceramic Society, vol. 90, pp. 2589-2594, 2007.
    [4] D. E. Clark, D. C. Folz, and J. K. West, "Processing materials with microwave energy," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 287, pp. 153-158, Aug 15 2000.
    [5] D. M. Pozar, Microwave engineering: Wiley-India, 2009.
    [6] W. H. Sutton, "Microwave processing of ceramic materials," American Ceramic Society Bulletin, vol. 68, pp. 376-386, 1989.
    [7] E. Siores and D. Dorego, "Microwave Applications in Materials Joining," Journal of materials processing technology, vol. 48, pp. 619-625, Jan 15 1995.
    [8] A. Loupy, Microwaves in Organic Synthesis: Wiley-VCH 2006.
    [9] W. Hertl, "Kinetics of barium titanate synthesis," Journal of the American Ceramic Society, vol. 71, pp. 879-883, 1988.
    [10] P. Pinceloup, C. Courtois, J. Vicens, A. Leriche, and B. Thierry, "Evidence of a dissolution–precipitation mechanism in hydrothermal synthesis of barium titanate powders," Journal of the European Ceramic Society, vol. 19, pp. 973-977, 1999.
    [11] J. O. Eckert Jr, C. C. Hung‐Houston, B. L. Gersten, M. M. Lencka, and R. E. Riman, "Kinetics and mechanisms of hydrothermal synthesis of barium titanate," Journal of the American Ceramic Society, vol. 79, pp. 2929-2939, 1996.
    [12] S. Wada, T. Suzuki, and T. Noma, "Preparation of barium titanate fine particles by hydrothermal method and their characterization," Nippon seramikkusu kyokai gakujutsu ronbunshi, vol. 103, pp. 1220-1227, 1995.
    [13] I. MacLaren and C. Ponton, "A TEM and HREM study of particle formation during barium titanate synthesis in aqueous solution," Journal of the European Ceramic Society, vol. 20, pp. 1267-1275, 2000.
    [14] X. Wang, B. Lee, M. Hu, E. Payzant, and D. Blom, "Mechanism of nanocrystalline BaTiO 3 particle formation by hydrothermal refluxing synthesis," Journal of Materials Science: Materials in Electronics, vol. 14, pp. 495-500, 2003.
    [15] J. Moon, J. A. Kerchner, H. Krarup, and J. H. Adair, "Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts," Journal of materials research, vol. 14, pp. 425-435, Feb 1999.
    [16] J. Moon, E. Suvaci, T. Li, S. A. Costantino, and J. H. Adair, "Phase development of barium titanate from chemically modified-amorphous titanium (hydrous) oxide precursor," Journal of the European Ceramic Society, vol. 22, pp. 809-815, Jun 2002.
    [17] J. Moon, E. Suvaci, A. Morrone, S. A. Costantino, and J. H. Adair, "Formation mechanisms and morphological changes during the hydrothermal synthesis of BaTiO< sub> 3</sub> particles from a chemically modified, amorphous titanium (hydrous) oxide precursor," Journal of the European Ceramic Society, vol. 23, pp. 2153-2161, 2003.
    [18] J. H. Adair, J. Crampo, M. M. Mandanas, and E. Suvaci, "The role of material chemistry in processing BaTiO3 in aqueous suspensions," Journal of the American Ceramic Society, vol. 89, pp. 1853-1860, Jun 2006.
    [19] R. A. Kimel and J. H. Adair, "Aqueous Degradation and Chemical Passivation of Yttria‐Tetragonally‐Stabilized Zirconia at 25° C," Journal of the American Ceramic Society, vol. 85, pp. 1403-1408, 2002.
    [20] R. A. Kimel, V. Ganine, and J. H. Adair, "Double injection synthesis and dispersion of submicrometer barium titanyl oxalate tetrahydrate," Journal of the American Ceramic Society, vol. 84, pp. 1172-1174, May 2001.
    [21] S. Venigalla and J. H. Adair, "Theoretical modeling and experimental verification of electrochemical equilibria in the Ba-Ti-C-H2O system," Chemistry of materials, vol. 11, pp. 589-599, Mar 1999.
    [22] T. J. Yosenick, D. V. Miller, R. Kumar, J. A. Nelson, C. A. Randall, and J. H. Adair, "Synthesis of nanotabular barium titanate via a hydrothermal route," Journal of materials research, vol. 20, pp. 837-843, Apr 2005.
    [23] R. I. Walton, F. Millange, R. I. Smith, T. C. Hansen, and D. O''Hare, "Real time observation of the hydrothermal crystallization of barium titanate using in situ neutron powder diffraction," Journal of the American Chemical Society, vol. 123, pp. 12547-12555, 2001.
    [24] H. Xu and L. Gao, "New evidence of a dissolution-precipitation mechanism in hydrothermal synthesis of barium titanate powders," Materials Letters, vol. 57, pp. 490-494, 2002.
    [25] L. Qi, B. I. Lee, P. Badheka, D. H. Yoon, W. D. Samuels, and G. J. Exarhos, "Short-range dissolution-precipitation crystallization of hydrothermal barium titanate," Journal of the European Ceramic Society, vol. 24, pp. 3553-3557, 2004.
    [26] T. Tsumura, K. Matsuoka, and M. Toyoda, "Formation and Annealing of BaTiO3 and SrTiO3 Nanoparticles in KOH Solution," J. Mater. Sci. Technol, vol. 26, pp. 33-38, 2010.
    [27] M. Inoue, T. Nishikawa, and T. Inui, "Reactions of rare earth acetates with aluminum isopropoxide in ethylene glycol: Synthesis of the garnet and monoclinic phases of rare earth aluminates," Journal of materials science, vol. 33, pp. 5835-5841, Dec 15 1998.
    [28] Y. J. Jung, D. Y. Lim, J. S. Nho, S. B. Cho, R. E. Riman, and B. W. Lee, "Glycothermal synthesis and characterization of tetragonal barium titanate," Journal of crystal growth, vol. 274, pp. 638-652, Feb 1 2005.
    [29] M. M. Lencka and R. E. Riman, "Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders," Chemistry of materials, vol. 5, pp. 61-70, Jan 1993.
    [30] M. M. Lencka and R. E. Riman, "Hydrothermal synthesis of perovskite materials: thermodynamic modeling and experimental verification," Ferroelectrics, vol. 151, pp. 159-164, 1994.
    [31] B. L. Gersten, M. M. Lencka, and R. E. Riman, "Low‐Temperature Hydrothermal Synthesis of Phase‐Pure (Ba, Sr) TiO3 Perovskite using EDTA," Journal of the American Ceramic Society, vol. 87, pp. 2025-2032, 2004.
    [32] Y. Ma, E. Vileno, S. L. Suib, and P. K. Dutta, "Synthesis of tetragonal BaTiO3 by microwave heating and conventional heating," Chemistry of materials, vol. 9, pp. 3023-3031, 1997.
    [33] G. J. Choi, H. S. Kim, and Y. S. Cho, "BaTiO< sub> 3</sub> particles prepared by microwave-assisted hydrothermal reaction using titanium acylate precursors," Materials Letters, vol. 41, pp. 122-127, 1999.
    [34] S. H. Jhung, J. H. Lee, J. W. Yoon, Y. K. Hwang, J. S. Hwang, S. E. Park, and J. S. Chang, "Effects of reaction conditions in microwave synthesis of nanocrystalline barium titanate," Materials Letters, vol. 58, pp. 3161-3165, Oct 2004.
    [35] J. M. Lee, D. P. Amalnerkar, Y. K. Hwang, S. H. Jhung, J. S. Hwang, and J. S. Chang, "Microwave assisted semi-solvothermal synthesis of nanocrystalline barium titanate," J Nanosci Nanotechnol, vol. 7, pp. 952-9, Mar 2007.
    [36] V. Swaminathan, S. S. Pramana, T. J. White, L. Chen, R. Chukka, and R. V. Ramanujan, "Microwave synthesis of noncentrosymmetric BaTiO3 truncated nanocubes for charge storage applications," ACS Appl Mater Interfaces, vol. 2, pp. 3037-42, Nov 2010.
    [37] X. W. Yang, Y. W. Zeng, L. Q. Mo, and L. X. Han, "Rapid synthesis of quasi-spherical (Ba,Sr)TiO3 nanocrystals via a microwave-activated glycothermal approach," Journal of Materials Chemistry, vol. 21, pp. 3133-3141, 2011.
    [38] Z. Shen, L. Shao, J. Chen, and J. Yun, "Mass production of Ba1− xSrxTi1− yZryO3(0≤x≤ 1, 0≤y≤ 0.5) nanoparticles," Materials Letters, vol. 59, pp. 2232-2237, 2005.
    [39] S. K. Lee, S. S. Ryu, and D. H. Yoon, "Synthesis of fine Ca-doped BaTiO 3 powders by solid-state reaction method—Part II: Rheological study on milling," Journal of electroceramics, vol. 18, pp. 1-7, 2007.
    [40] T. Kubo, M. Hogiri, H. Kagata, and A. Nakahira, "Synthesis of Nano‐sized BaTiO3 Powders by the Rotary‐Hydrothermal Process," Journal of the American Ceramic Society, vol. 92, pp. S172-S176, 2009.
    [41] Y. Xie, S. Yin, T. Hashimoto, Y. Tokano, A. Sasaki, and T. Sato, "Sintering and dielectric properties of BaTiO3 prepared by a composite-hydroxide-mediated approach," Materials Research Bulletin, vol. 45, pp. 1345-1350, 2010.
    [42] F. Dang, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara, "Characteristics of BaTiO3 Particles Sonochemically Synthesized in Aqueous Solution," Japanese Journal of Applied Physics, vol. 48, 2009.
    [43] F. Dang, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara, "A new effect of ultrasonication on the formation of BaTiO< sub> 3</sub> nanoparticles," Ultrasonics sonochemistry, vol. 17, pp. 310-314, 2010.
    [44] F. Dang, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara, "Oriented aggregation of BaTiO3 nanocrystals and large particles in the ultrasonic-assistant synthesis," CrystEngComm, vol. 12, pp. 3441-3444, 2010.
    [45] F. Dang, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara, "Growth of BaTiO3 nanoparticles in ethanol-water mixture solvent under an ultrasound-assisted synthesis," Chemical Engineering Journal, 2011.
    [46] C. J. Brinker and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing: Academic Pr, 1990.
    [47] J. Holoubek, "Some applications of light scattering in materials science," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 106, pp. 104-121, 2007.
    [48] J. H. Park, S. Park, S. C. Nam, and H. J. Lee, "Effects of Reaction Conditions on the Synthesis of BaTiO~ 3 Powder," Journal-korean institute of chemical engineers, vol. 42, pp. 10-19, 2004.

    QR CODE
    :::