| 研究生: |
劉書孝 Shu-Xiao Liu |
|---|---|
| 論文名稱: | The Study of the Di-Higgs Production via Vector Boson Fusion Channel for the Phase II CMS at √𝐬 =14 TeV |
| 指導教授: |
余欣珊
Shin-Shan Eiko Yu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 雙希格斯玻色子生成 |
| 外文關鍵詞: | HHVBF, HL-LHC |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大型強子對撞機將會在下個10 年進入高亮度大型強子對撞機時期並且在14 兆電子伏特質心對撞能量下運作。預期每年的總亮度為300 fb−1。在本研究中,雙希格斯玻色子生成經向量玻色子融合通道將被研究。雙希格斯玻色子會被重建為兩個AK8 噴流,向量玻色子融合噴流會被重建為兩個AK4 噴流。針對雙希格斯玻色子及向量玻色子融合拓樸設計的篩選會被採用。動力學分布及沒有堆疊跟200堆疊的比較會被呈現。對於6 個模型中理論參數的篩選通過率也會被研究。
LHC will enter the era of High-Luminosity LHC in the next 10 year and will run at sqrt(s) = 14 TeV. The designed integrated luminosity is 300 fb1 per year. The di-Higgs production via vector boson fusion channel is probed in this analysis. The Higgs bosons are reconstructed by two AK8 jets and the VBF jets are reconstruct by AK4 jets. The selections designed for VBF topology and di-Higgs are applied. The kinematic distribution and the comparison with no pile up and 200 pile up are presented. The efficiency of each selection is also studied for six variations of the theoretical parameters in the theory model.
[1] Fady Bishara, Roberto Contino, and Juan Rojo. “Higgs pair production
in vector-boson fusion at the LHC and beyond”. In: The European Physical
Journal C 77.7 (2017), p. 481. ISSN: 1434-6052. DOI: 10.1140/epjc/
s10052-017-5037-9. URL: https://doi.org/10.1140/epjc/
s10052-017-5037-9.
[2] S. Chatrchyan et al. “The CMS experiment at the CERN LHC”. In: JINST 3
(2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.
[3] Patrawan Pasuwan. “Track-counting luminosity measurements in ATLAS”.
In: PoS LHCP2019 (2019). Ed. by Pablo Roig Garcés et al., p. 063.
DOI: 10.22323/1.350.0063.
[4] Burkhard Schmidt. “The High-Luminosity upgrade of the LHC: Physics
and Technology Challenges for the Accelerator and the Experiments”. In:
J. Phys.: Conf. Ser. 706.2 (2016), 022002. 42 p. DOI: 10.1088/1742-6596/
706/2/022002. URL: https://iopscience.iop.org/article/
10.1088/1742-6596/706/2/022002.
[5] Jean-Marc Lévy-Leblond and Jean-Pierre Provost. “Additivity, rapidity,
relativity”. In: American Journal of Physics 47.12 (1979), pp. 1045–1049. DOI:
10.1119/1.11972. URL: https://doi.org/10.1119/1.11972.
[6] CMS Collaboration. “Precise mapping of the magnetic field in the CMS
barrel yoke using cosmic rays”. In: Journal of Instrumentation 5.03 (2010),
T03021–T03021. ISSN: 1748-0221. DOI: 10.1088/1748- 0221/5/03/
t03021. URL: http://dx.doi.org/10.1088/1748-0221/5/03/
T03021.
[7] I Gorelov et al. “Electrical characteristics of silicon pixel detectors”. In: Nuclear
Instruments and Methods in Physics Research Section A, 202-217 (2002)
489 (Aug. 2002). DOI: 10.1016/S0168-9002(02)00557-0.
[8] Particle Data Group et al. “Review of Particle Physics”. In: Progress of Theoretical
and Experimental Physics 2020.8 (Aug. 2020). 083C01. ISSN: 2050-3911.
DOI: 10.1093/ptep/ptaa104. eprint: https://academic.oup.
com/ptep/article-pdf/2020/8/083C01/33653179/ptaa104.
pdf. URL: https://doi.org/10.1093/ptep/ptaa104.
[9] K. Deiters et al. “Avalanche photodiodes for the CMS detector”. In: 2000
IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).
Vol. 1. 2000, 7/32–7/35 vol.1. DOI: 10.1109/NSSMIC.2000.949269.
[10] Simon Honc. “New applications of the multi variate analysis framework
NeuroBayes for an inclusive b-jet cross section measurement at CMS”.
PhD thesis. 2011. DOI: 10.5445/IR/1000023325.
[11] S. Abdullin et al. “Design, performance, and calibration of the CMS
hadron-outer calorimeter”. In: European Physical Journal C 57 (Oct. 2008),
pp. 653–663. DOI: 10.1140/epjc/s10052-008-0756-6.
[12] J. Alwall et al. “The automated computation of tree-level and next-toleading
order differential cross sections, and their matching to parton
shower simulations”. In: Journal of High Energy Physics 2014.7 (2014), p. 79.
ISSN: 1029-8479. DOI: 10.1007/JHEP07(2014)079. URL: https://
doi.org/10.1007/JHEP07(2014)079.
[13] Johannes Bellm et al. “Herwig 7.0/Herwig++ 3.0 release note”. In: Eur.
Phys. J. C 76.4 (2016), p. 196. DOI: 10.1140/epjc/s10052-016-4018-
8. arXiv: 1512.01178 [hep-ph].
[14] Torbjörn Sjöstrand et al. “An introduction to PYTHIA 8.2”. In: Computer
Physics Communications 191 (2015), 159–177. ISSN: 0010-4655. DOI: 10 .
1016/j.cpc.2015.01.024. URL: http://dx.doi.org/10.1016/
j.cpc.2015.01.024.
[15] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. “The anti-ktjet
clustering algorithm”. In: Journal of High Energy Physics 2008.04 (2008),
063–063. ISSN: 1029-8479. DOI: 10.1088/1126-6708/2008/04/063.
URL: http://dx.doi.org/10.1088/1126-6708/2008/04/063.
[16] Simone Marzani, Lais Schunk, and Gregory Soyez. “The jet mass distribution
after Soft Drop”. In: The European Physical Journal C 78.2 (2018). ISSN:
1434-6052. DOI: 10.1140/epjc/s10052-018-5579-5. URL: http:
//dx.doi.org/10.1140/epjc/s10052-018-5579-5.
[17] A.M. Sirunyan et al. “Identification of heavy, energetic, hadronically decaying
particles using machine-learning techniques”. In: Journal of Instrumentation
15.06 (2020), P06005–P06005. DOI: 10.1088/1748-0221/15/
06/p06005. URL: https://doi.org/10.1088/1748-0221/15/06/
p06005.
[18] Search for vector boson fusion production of a massive resonance decaying to a
pair of Higgs bosons in the four b quark final state at the HL-LHC using the
CMS Phase 2 detector. Tech. rep. CMS-PAS-FTR-18-003. Geneva: CERN,
2018. URL: https://cds.cern.ch/record/2628598.