跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃信誠
Sin-Cheng Huang
論文名稱: 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
指導教授: 鍾雲吉
Yun-Chi Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 83
中文關鍵詞: 圓片顆粒體振動床實驗離散元素法實驗驗證傳輸性質剪力帶分佈
外文關鍵詞: Disk particulate, Vibrated bed, DEM, Experimental Validation, Transport properties, Shear band
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究使用離散元素法(DEM)模擬圓片顆粒體在振動床中的迴流現象,探討背景阻尼對振動床系統的影響,並以實驗結果驗證DEM模擬的結果。實驗採用改良式粒子追蹤法(Improved Particle Tracking Velocimetry)量測圓片顆粒體的平移速度及旋轉速度,進而計算顆粒體傳輸性質(例如:局部平均速度、局部擾動速度、局部粒子溫度、擾動速度分佈、擴散係數與整體平均動能)。由實驗結果得知兩側顆粒體旋轉速度在振動床中頗為顯著。在DEM模擬所需要的圓片重要輸入參數,皆由基本測試量測而得。本研究比對實驗結果與DEM模擬結果,發現DEM沒有加背景阻尼的系統能量甚大於實驗系統的能量,而DEM加入背景阻尼的結果有效地消散模擬系統過大的能量,並與實驗的傳輸性質吻合。最後使用驗證合理的DEM模擬結果,分析顆粒體在振動床的內部性質,結果證實振動床兩側與底部剪力帶確實存在,而在剪力帶區域裡,其剪率(shear rate)較大。另外,發現振動床中間部分顆粒個數與接觸頻率較多,但接觸力道與平均旋轉速度較小,而振動床兩側顆粒個數與接觸頻率較少,但接觸力道與平均旋轉速度較大。


    This paper proposes a discrete element method (DEM) model to simulate the convection phenomenon of circular disk particles in a vibrating bed. The effect of background damping on the convection behavior of disks was investigated. The discrete element simulations were validated with the corresponding experiments. The improved Particle Tracking Velocimetry (PTV) was employed to measure translational and rotational velocities of these disk particles in the vibrating bed. The transport properties of disk particles (such as local average velocities, local fluctuation velocities, local granular temperature distributions, fluctuation velocity distributions, and self-diffusion coefficients) in the vibrating bed were evaluated from the experimental results. The results showed that the average rotational velocities of disk particles adjacent to the sidewalls can play a significant role in a vibrated granular bed. The important particle properties required for DEM simulation were not simply assumed but measured directly in laboratory tests. The corresponding transport properties from DEM results were also analyzed. The comparison between the DEM results and experimental results was made and discussed in this paper. It can be seen that the system energy is larger in the DEM results without background damping than in the experimental results. However, the DEM results with background damping matched well with the experimental results. The internal characteristics in the vibrating bed were further analyzed via a reasonably validated DEM model. The DEM results corroborated that the shear bands occur at the regions neighboring the sidewalls and the bottom base. In addition, although the solid fraction and contact frequency are larger in the central part of vibrating bed, the contact forces and particle rotational velocities are smaller. In contrast, although the solid fraction and contact frequency are smaller in the regions neighboring the sidewalls, the contact forces and particle rotational velocities are larger.

    目錄 摘要 i Abstract ii 目錄 iv 附表目錄 vi 附圖目錄 vii 第一章 緒論 1 1.1顆粒流 1 1.2顆粒體在振動床內之迴流現象 2 1.3研究動機與方向 5 第二章 實驗設置與模擬原理 7 2.1 實驗設置 7 2.1.1 實驗設備 7 2.1.2 實驗步驟 12 2.1.3 實驗影像處理 13 2.1.4影像分析流程 16 2.2離散元素法介紹 17 2.2.1離散元素法介紹 17 2.2.2模擬參數 21 2.3傳輸性質 22 第三章 結果與討論 26 3.1實驗結果與DEM結果比對 27 3.2振動床內部性質探討 33 第四章 結論 37 參考文獻 39

    參考文獻
    [1] J.Lee, Heap formation in two-dimensional granular media, Journal of Physics A:Mathematical and General 27 (1994) L257-L262.
    [2] T.Elperin, E.Golshtein, Effects of convection and friction on size segregation in vibrated granular beds, Physica A: Statistical Mechanics and its Applications 247 (1997) 67-78.
    [3] 黃大慶,「振動床於弱振動下顆粒運動機制研究」 國立中央大學機械工程學系流體力學組碩士班碩士論文,民國94年。
    [4] 方啟守,「振動床於弱振動下顆粒分離機制研究」 國立中央大學機械工程學系流體力學組碩士班碩士論文,民國93年。
    [5] S.S.Hsiau, M.H.Wu, C.H.Chen, Arching phenomena in a vibrated granular bed, Powder Technology 99 (1998) 185-193.
    [6] M.Majid, P.Walzel, Convection and segregation in vertically vibrated granular beds, Powder Technology 192 (2009) 311–317.
    [7] 戴其璜,「振動床運動機制之研究(Dynamic Behavior in a Vibrated Bed) 」國立中央大學機械工程學系流體力學組碩士班碩士論文,民國90年。
    [8] 吳俊輝,「非球形顆粒體在振動床中流動行為之研究」國立中央大學機械工程學系流體力學組碩士班碩士論文,民國99年。
    [9] K.M.Aoki, A.Tetsuo, Y.Maki, T.Watanabe, Convective roll patterns in vertically vibrated beds of granules, Physical Review E 432 (1996).
    [10] J.B.Knight, External boundary and internal shear bands in granular convection, Physical Review E 55 (1997) 6016–6023.
    [11] S.S.Hsiau, C.H.Chen, Granular convection cells in a vertical shaker, Powder Technology 111 (2000) 210–217.
    [12] C.H.Tai, S.S.Hsiau, Dynamic behaviors of powders in a vibrating bed, Powder Technology 139 (2004) 221– 232.
    [13] M.Faraday, On a peculiar class of acoustical figures and oncertain forms assumed by groups of particles upon vibrating elastic surfaces, Philosophical Transactions of the Royal Society of London 52 (1831) 299-340.
    [14] E.L.Grossman, Effects of container geometry on granular convection, Physical Review E 56 (1997) 3290–3300.
    [15] S.S.Hsiau, S.C.Yang, Simulation study of the convection cells in a vibrated granular bed, Chemical Engineering Science 55 (2000) 3627-3637.
    [16] A.J.Matchett, T.Yanagida, Y.Okudaira, S.Kobayashi, Vibrating powder beds: a comparison of experimental and Distinct Element Method simulated data, Powder Technology 107 (2000) 13-30.
    [17] S.S.Hsiau, S.C.Yang, Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the cohesive effect of liquid bridges, Chemical Engineering Science 58 (2001) 339-351.
    [18] T.Yuji, M.Yoshihide, Y.Tomoya, N.Katsuji, Numerical simulation of particle motion in vibrated fluidized bed, Powder Technology 59 (2004) 437–447.
    [19] L.S.Lu, S.S.Hsiau, Mixing in a vibrated granular bed: Diffusive and convection effects, Powder Technology 184 (2008) 31-43.
    [20] S.E.Naeini, J.K.Spelt, Two-dimensional discrete element modeling of a spherical steel media in a vibrating bed, Powder Technology 195 (2009) 83–90.
    [21] Y.C.Chung, H.H.Liao, S.S.Hsiau, Convection behavior of non-spherical particles in a vibrating bed: Discrete element modeling and experimental validation, Powder Technology 237 (2013) 53–66.
    [22] Y.C.Chung, S.S.Hsiau, H.H.Liao, J.Y.Ooi, An improved PTV technique to evaluate the velocity field of non-spherical particles, Powder Technology 202 (2010) 151–161.
    [23] M.Sonka, V.Hlavac, R.Boyle, Image porcessing, analysis and machine vision, PWS Publishing (1999).
    [24] P.A.Cundall, O.D.L.Strack, Discrete numerical-model for granular assemblies, Geotechnique 29 (1979) 47–65.
    [25] S.Luding, Hysteresis and creep in powder and grains, Powders and Grains (2005) 291-299.
    [26] C.O'Sullivan, J.D.Bray, Selecting a suitable time step for discrete element simulationsthat use the central difference time integration scheme, Engineering Computations 21 (2004) 278–303.
    [27] C.Wanga, D.D.Tannanta, P.A.Lillyb, Numerical analysis of the stability of heavily jointedrock slopes using PFC2D, International Journal of Rock Mechanics & Mining Sciences 40 (2003) 415–424.
    [28] S.C.Yang, S.S.Hsiau, The simulation of powders with liquid bridges in a 2D vibrated bed, Chemical Engineering Science 56 (2001) 6837–6849.
    [29] K.Iwashita, M.Oda, Rolling resistance at contacts in simulation of shear band development by DEM, Journal of the Engineering Mechanics ASCE 124 (1998) 285–292.
    [30] E.E.Ehrichs, H.M.Jaeger, G.S.Karczmar, J.B.Knight, V.Y.Kuperman, S.R.Nagel, Granular convection observed by magnetic resonance imaging, Science 267 (1995) 1632–1634.
    [31] J.B.Knight, E.E.Ehrichs, V.Y.Kuperman, J.K.Flint, H.M.Jaeger, S.R.Nagel, Experimental study of granular convection, Physical Review E 54 (1996) 5726–5738.

    QR CODE
    :::