| 研究生: |
邱笙輔 CIOU,SHENG-FU |
|---|---|
| 論文名稱: |
以動態離心模型試驗模擬淺基礎建築物於層狀液化地盤之受震反應 Centrifuge modeling on seismic responses of building with shallow foundations in multi-layer liquefiable ground during earthquakes |
| 指導教授: |
黃俊鴻
Jin-Hung Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 199 |
| 中文關鍵詞: | 淺基礎 、土壤液化 、沉陷 、離心振動台試驗 |
| 外文關鍵詞: | shallow foundation, soil liquefaction, settlement, centrifuge shaking table test |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
土壤液化對建築物、土石壩、橋梁、港口和地下管線都有很大的影響。許多地震會導致地盤液化,造成大規模性災難與經濟損失。因此,了解土壤液化對於結構物的影響,是一重要課題。利用離心模型試驗來研究地震引致的地盤液化,已被證明,是一有效並具有良好試驗結果之方法。
本研究設計兩種不同樓層數(1與3層樓)之淺基礎建築物模型,利用中大地工離心機於65g離心力場下進行模型試驗,並藉由試體中安裝之加速度計、孔隙水壓計、線性差動可變變壓器(LVDT)、雷射位移計(LDT)及土壓力計,分別量測各項物理量之受震歷時,探討淺基礎建築物於液化地盤上之受震反應。
研究結果顯示:(1) 砂土試體在土壤未達液化狀態時,有明顯加速度振幅放大效應;但當地盤產生液化現象時,液化層會阻隔振波的傳遞,對建築物有振動衰減之效果;(2)建築物越重時,受震後所產生的沉陷量會越大;(3)建築物之沉陷會隨輸入振動的增強而增加,且大部分的沉陷都在震動期間所產生;(4)當施加震動越大時,液化層深度會越深,且土層液化狀態維持時間較長,超額孔隙水壓消散所需的時間也較為長久。(5)地表的緊砂層,減少地表的最大加速度振幅,更能大幅度降低地表沉陷量與建築物沉陷量。
The effects of liquefaction on foundations of buildings, bridges and other structures, as well as on ports and buried lifelines, cause large economics losses in many earthquakes.This research is a project for studying post-earthquake settlement and deformation behavior of buildings with shallow foundations in liquefiable ground using dynamic centrifuge tests.
In this research, a centrifugal scale-down model was specifically designed and tested at 65g. The model buildings used in the study have two different weights and in the different sand grounds saturated with viscous fluid. Several accelerometers, pore water pressure transducers, linear variable differential transformer (LVDT), laser displacement sensor and earth pressure cells were installed to measure the seismic responses.The measured data included the generation of pore water pressure the ground and the displacement histories of the ground and building during shaking.
Based on the model test results, the following conclusions are made: (1) In liquefiable ground, liquefied layer will isolate the vibration that progagate to the buildings. (2) After earthquake shaking, the heavier the building the settlement ,the larger. (3) The settlement of Buildings settlement increase with the increasing of the input vibration. (4) The liquefied depth of sand layer increases with the increasing of input.(5) By setting the dense sand layer on the ground surface can significantly reduce the settlement of ground and building.
1.Liu, L., and Dobry, R., “Centrifuge study of shallow foundations on saturated sand during earthquakes,” Proc., 4th Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Soil Liquefaction, Nat. Ctr. For Earthquake Engrg. Res., State Univ. of New York at Buffalo, Buffalo, N.Y., 493-508 (1992)
2.Krammer, S.L., Geotechnical earthquake engineering, Prentice Hall, New Jersey (1996)
3.Yoshimi, Y., “Settlement of buildings on saturated sand during earthquakes,” Soils and Foundations, Vol. 17, pp. 23-28 (1977)
4.Kutter, B.L., O’Leary, L.M., Thompson, P.Y., and Lather, R., “Gravity-Scaled Tests on Blast-Induced Soil-Structure Interaction,” Journal of Geotechnical Engineering, Vol. 114, No. 4, (1988)
5.Deng, L.,and Kutter, B.L., “Characterization of rocking shallow foundations using centrifuge model tests,” Earthquake Engineering and Structure Dynamics, (1988)
6.Stewart, D.P., Chen, Y,R., and Kutter, B.L., “Experience with the Use of Methylcellulose as a Viscous Pore Fluid in Centrifuge Models,” Geotechnical Testing Journal, Vol. 21, No. 4, pp. 365-369 (1998)
7.Sharp, M.K., Dobry, R., and Abdoun T.H. ,“Liquefaction Centrifuge Modeling of Sands of Different Permeability” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 12,pp. ( 2003)
8.Gajan,S., Kutter, B.L., Phalen, J.D., Hutchinson, T.C.,and Martin, G.R. “Centrifuge modeling of load-deformation behavior of rocking shallow foundations,"Soil Dynamics and Earthquake Engineering,Vol.25,pp.773-783 (2005)
9.Knappett, J.A., Haigh, S.K., and Madabhushi S.P.G., “Mechanisms of failure for shallow foundations under earthquake loading,” Soil Dynamics and Earthquake Engineering, Vol. 26, pp. 91-102 (2006)
10.Marques, A.S., Coelho, P.A.L.F., Cilingir, U., Haigh, S.K.,and Madabhushi, S.P.G., “Centrifuge modelling of liquefaction-induced effects on shallow foundation with different bearing pressure,” Eurofuge,(2007)
11.Ghosh, B.,and Madabhushi, S.P.G., “Centrifuge modelling of seismic soil structure interaction effects,” Nuclear Engineering and Design,Vol. 237,887-896(2007)
12.Dashti, S., Bray, J., Riemer, M., and Wilson, D., “Centrifuge Experimentation of Building Performance on Liquefied Ground,” Geotechnical Earthquake Engineering and Soil Dynamics IV (2008)
13.Gajan, S., and Kutter, B.L., “Capacity, Settlement, and Energy Dissipation of Shallow Footings Subjected to Rocking,” Journal of Geotechnical and Geoenvironmental Engineering,Vol. 134, No. 8, pp. 1129-1141(2008)
14.Gajan, S., and Kutter, B.L., “Contact Interface Model for Shallow Foundations Subjected to Combined Cyclic Loading,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 3, pp. 407–419 (2009)
15.Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., “Centrifuge Testing to Evaluate and Mitigate Liquefaction-induced Building Settlement Mechanisms,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 7, pp.918-929 (2010)
16.Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., “Mechanisms of Seismically Induced Settlement of Buildings With Sallow Foundations on Liquefiable Soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 1, pp.151-164 (2010)
17.Tazoh, T., Sato, M., Jane, J.,and Gazetas, G., “Centrifuge tests on pile foundation-structure systems affected by liquefaction-inducted soil flow after quay wall failure ,” The 14th World Conference on Earthquake Engineering (2010)
18.中華民國大地工程學會,建築物基礎構造設計規範,中華民國大地工程學會(2001)。
19.中華民國內政部營建署,建築物技術規則,中華民國內政部營建署(2008)。
20.周廷韋,「以離心模型試驗模擬基樁反覆抗壓及抗拉拔之行為」,碩士論文,國立中央大學土木工程學系,中壢 (2008)。
21.鄺柏軒,「利用動態離心模型試驗模擬砂土層之剪應力與剪應變關係」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。
22.王崇儒,「利用彎曲元件探查離心砂土模型剪力波波速剖面及其工程上的應用」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
23.莊汶雅,「以動態離心模型試驗模擬沉埋隧道上浮機制」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
24.蔡晨暉,「以離心模型試驗模擬沉箱式碼頭之受震行為」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
25.凃亦峻,「位於可液化砂土層中單樁基礎受震反應的離心模擬」,碩士論文,國立中央大學土木工程學系,中壢(2011)。
26.邱吉爾,「以動態離心模型試驗模擬液化地盤淺基礎建築物之受震反應」,碩士論文,國立中央大學土木工程學系,中壢(2012)。
27.邱益增,「加勁土堤受震反應之離心模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(2012)。
28.楊子霈,「以動態離心模型試驗模擬不同型式基礎建築物於液化地盤之受震反應」,碩士論文,國立中央大學土木工程學系,中壢(2013)。
29.黃富國、余明山、何政弘,「九二一集集大震土壤液化震害與問題探討」,土
木工程技術期刊,第三卷,第三期,第49~79 頁,台灣(1999)。
30.中華民國大地工程學會,建築物基礎構造設計規範,中華民國大地工程學會
(2001)。