跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林上偉
Shang-Wei Lin
論文名稱: 應用於單電子電晶體之矽/鍺量子點研製
Study of Forming Si/Ge Quantum dots for Single-Electron Devices
指導教授: 李佩雯
Pei-Wen Li
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 89
中文關鍵詞: 小線寬間隙壁自我對準技術庫倫震盪效應庫倫阻斷效應矽鍺量子點單電子電晶體
外文關鍵詞: Single-Electron Transistor(SET), Quantum dot, Coulomb blockade Effect, Narrow spacer self-alignment(NSSA)), Coulomb Oscillation Effcet
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究重點,在於發展可應用於矽基材單電子電晶體之量子點(線)的研製。有鑑於其他相關研究單位所發展的量子點製程,大都未考量製程中的穩定性、再現性、成本考量以及與現今半導體製程的相容性;故本論文將重點放在可相容於目前傳統的LSI製程,以及盡量提高製程的穩定性與再現性,並且降低製程的成本,發展出數種在傳統矽基材下可行的量子點(線)製作方式。


    In this thesis, the technique of forming Si & Ge quantum dots for Single-electron devices will be proposed. The advantages of the technique are well controllable, reproducible and compatible with traditional CMOS process.

    致謝…………………………………………………………………………….Ⅱ 圖目錄……………………………………………………………………….…Ⅲ 表目錄………………………………………………………………………….Ⅷ 論文結構概述………………………………………………………………….Ⅸ 第一章 研究動機 ………………………...……………………………………1 1-1 半導體發展趨勢………………………………………………………1 1-2 單電子電晶體的誕生…………………………………………………2 1-3 單電子電晶體的應用…………………………………………………5 1-4 單電子電晶體研究現況………………………………………………8 第二章 單電子電晶體動作原理………………...……………………………10 2-1 前言..…………………………………………………………………10 2-2 單電子電晶體動作基本條件……………………..…………………12 2-3 單電子電晶體之庫倫電荷效應…………………..…………………14 2-3-1 庫倫阻斷效應……………………………..…………………14 2-3-2 庫倫震盪效應……………………..…………………………16 2-3-3 微分導電係數等高線圖…..…………………………………19 第三章 鍺量子點的研製...……………………………………………………21 3-1 前言…..………………………………………………………………21 3-2 鍺量子點的研製介紹…..……………………………………………23 3-2-1 矽/鍺選擇性氧化…….………………………………………24 3-3 鍺量子點製作流程…..………………………………………………26 3-4 結果與討論…..………………………………………………………30 3-4-1 氧化時間(熱預算值)對鍺量子點的影響……………………30 3-4-2 鍺含量(x值)對鍺量子點的影響…….………………………33 3-5 鍺量子點應用於單電子電晶體之驗證…..…………………………37 第四章 矽量子線的研製…………………………………………………...…39 4-1 前言………………………………………………………………..…39 4-2 矽量子線的研製介紹……………………………………………..…43 4-2-1 小線寬間隙壁自我對準…………………………………..…43 4-2-2 矽非等向性濕蝕刻(TMAH)…..…………………....………..45 4-2-3 矽/氮化矽之選擇性氧化…………………….………………49 4-3 矽量子線結構製作流程……………………..………………………49 4-4 結果與討論…………………………………..………………………59 第五章 總結與未來展望……………………………...………………………69 參考文獻……………………………………………….………………………71

    [1] James D. Plummer and Michael D. Deal, “Silicon VLSI Technology: Fundamentals, Practice and Modeling”, CH1, p1-p5, 2002
    [2] L. S. Kuzmin and K. K. Likharev, JETP Lett., vol.45, p495, 1987
    [3] Matsumoto, K. “STM/AFM nano-oxidation process to room- temperature- operated single-electron transistor and other devices”, Processdings of the IEEE(85), Vol.14, April. 1997.
    [4] Yasuo Takahashi, Hideo Namatsu and Kenji Kurihara, “Size Dependence of the characteristics of Si single electron transistors on SIMOX substrates” Electron Devices, IEEE Trans., Vol. 43(8), p1213-1217, 1996
    [5] M. E. Rubin et al. Phys. Rev. Lett. 77, p5268, 1996
    [6] S. Horiguchi, M. Nagase and K. Shiraishi, “Mechanism of Potential Profile Formation in Silicon Single-electron Transistors Fabricated Using Pattern-Dependent Oxidation”, Jpn. J. Appl. Phys., Vol. 40, pL29, 2001
    [7] K. K. Likharev, “Single-Electron Devices and Their Applications”, PROCEEDINGS OF THE IEEE, Vol. 87, p606, 1999
    [8] U. Meirav and E. B. Foxman, “Single-electron phenomena in semiconductors”, Semicond. Sci. Technol., Vol. 11, p255, 1996
    [9] H. Ahmed and K. Nakazato, “Single-electron Devices”, Microelectronic Engineering, Vol. 32, p297, 1996
    [10] Y. Nakamura, D. L. Klein, and J. S. Tsai, Appl. Phys. Lett. 68, 275 1996
    [11] W. Chen, H. Ahmed and K. Nakazato, Appl. Phys. Lett. 66, 3383, 1995
    [12] D. L. Klein, P. L. McEuen, J. E. B. Katari, R. Roth, and A. P. Alivisatos, Appl. Phys. Lett. 68, 2574, 1996
    [13] U. Meirav, M. A. Kastner, and S. J. Wind, Phys. Rev. Lett. 65, p771, 1990
    [14] D. R. Lide, M. J. Astle and W. H. Beyer, “CRC Handbook of Chemistry and Physics”, 74th, 1995
    [15] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge concentration on SiGe oxidation behavior”, Appl. Phys. Lett., vol. 59, p1200, 1991
    [16] P. W. Li, W. M. Liao and S. W. Lin, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator”, Appl. Phys. Lett., vol. 83, p4628, 2003
    [17] M. Uematsu, H. Kageshima, K. Shirashi and M. Nagase, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures in silicon-on-insulator substrates”, Solid-State Electronics, vol. 48, p1073, 2004
    [18] Y. Ono, Y. Takahashi and M. Nagase, “Fabrication method for IC-Oriented Si Single-Electron Transistors”, IEEE Transactions on electron devices, vol. 47, p147, 2000
    [19] T. Hiramoto, H. Ishikuro and T. Fujii, “Fabrication of Si nanostructures for Single-Electron device Applications by Anisotropic etching”, Jpn. J. Appl. Phys., vol.35, p6664, 1996
    [20] H. Ishikuro, T. Fujii, and T. Saraya, “Coulomb blockade oscillations at room temperature in a Si quantum wire metal-oxide-semiconductor field-effect transistor fabricated by anisotropic etching on silicon-on-insulator substrate”, Appl. Phys. Lett., vol. 68, p3585, 1996
    [21] H. Tshikuro and T. Hiramoto, “Quantum mechanical effects in the silicon quantum dot in a Single-Electron Transistor”, Appl. Phys. Lett., vol. 71, p3691, 1997
    [22] O. Tabata, “Anisotropic Etching of Si in TMAH Solutions”, Sensor and Actuators A, vol. 34, p51, 1992
    [23] T. Hiramoto, “Nano-scale Silicon MOSFET: Towards Non-Traditional and Quantum Devices”, 2001 IEEE International SOI Conference, p8, 2001
    [24] S. Wolf, “Silicon Processing for the VLSI Era”, vol. 2, Ch2, 1990
    [25] James D. Plummer, “Silicon VLSI Technology”, Ch6-2, 2001

    QR CODE
    :::