| 研究生: |
李芳紜 Fang-Yun Li |
|---|---|
| 論文名稱: |
超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析 Electrochemical Impedance Spectroscopic Analysis of AgInS2 Thin Films Prepared by Using Ultrasonic Assisted Chemical Bath Deposition |
| 指導教授: |
李岱洲
Tai-Chou Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 光觸媒 、半導體薄膜 、電化學阻抗頻譜分析 、載子傳輸 |
| 外文關鍵詞: | photocatalyst, semiconductor thin films, EIS, carrier transfer |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用超音波輔助化學水浴法製備不同厚度之AgInS2半導體薄膜,並分析此材料之物性與光電性質,探討載子傳輸機制。從實驗結果可發現AgInS2薄膜為Orthorhombic phase,使用吸收光譜推測直接能隙值約為1.93~1.98 eV。光電性質量測的結果顯示,薄膜隨著鍍膜次數增加,可有效降低基材裸露與暗電流上升問題,其中鍍膜兩次之AgInS2光電極具有較佳的光電流值,在偏壓 1 V vs. SCE 下為 1.8 mA/cm2。由開環電位法量測薄膜於犧牲試劑( Na2S+K2SO3 )之費米能階(平帶電位)為 -0.845 V~ -1.020 V v.s. SCE,而Electrochemistry Impedance Spectroscopy(EIS)分析得知薄膜於相同犧牲試劑之費米能階為 -0.8 V~ -1.2 V vs. SCE,兩者數值相近。暗反應中,於犧牲試劑量測之EIS,可發現隨著鍍膜次數增加,R1(溶液電阻及薄膜電阻)也隨著增加;隨著偏壓較負,由於空乏區厚度變薄,會使得半導體電容越來越大;於照光情況下使用犧牲試劑為電解質所量測出來之EIS,可推測照光下,光激發生成之載子在不同偏壓下的傳輸機制,隨著光強增加,R2(電荷傳輸阻抗)會變小,使得載子傳輸較為容易。而不同光強下,皆於 -1.0 V ( vs. S.C.E.) 電容有最大值且載子存活時間最長。
未來的研究可調整不同銀銦比所製備之薄膜,由 EIS 分析技術得知薄膜於照光下之表面態電容、表面態時間,以了解此三成分硫化物光電極薄膜的光電化學行為。
In our previous studies, we have prepared photocatalyst thin films using Ultrasonic Chemical Bath Deposition (UCBD). By controlling [Ag]/[In] molar ratios in the precursors, we can obtain a single phase AgIn5S8, mixtures of AgIn5S8 and AgInS2 and a single phase AgInS2 thin films. Our studies focused on preparing AgInS2 films with different thickness and studying their electrochemical properties.
All the AgInS2 films after 400 °C thermal treatment have the orthorhombic structure and the direct energy band gap in the range of 1.93 to 1.98 eV. In order to understand the photoelectrochemical properties, AgInS2 films with different coatings were prepared. Xe lamp with an intensity of 100 mW/cm2 was then used to illuminate our samples. The photocurrent densities as a function of applied potential were measured. It was found that homogeneous AgInS2 films were obtained with increasing coatings. In addition, these dense films can effectively suppress the the dark current. In particular, the AgInS2 thin film of deposition two times (485.2 ± 28.2 nm) has the highest photocurrent density of 1.8 mA/cm2 under a bias of 1 V vs. SCE.
The fermi level (flat band potential) of films can be estimated from open circuit potential (OCP) measurements, as well as electrochemical impedance spectroscopic (EIS) analysis. The fermi levels of films in the sacrificial reagent consisted of Na2S and K2SO3 measured using OCP and EIS were varied from -0.845 V~ -1.020 V and -0.8 V~ -1.2 V, respectively. More information, such as charge transfer resistance and capacitance, can be retrieved from EIS analysis by fitting the experimental data to the model. In fact, Randle’ s model fitted the data better than other complicated models, which suggested that carriers transfer to the electrolyte directly from valence band under illumination. When depositing times increase, the resistance R1 (solution resistance and film resistance) will increase. When the applied potential decreases, the capacitance of the semiconductor will increase due to the thinner depletion layer. R2 (charge transfer resistance) will decrease dramatically under illumination, perhaps due to much higher carrier density. At -1.0 V vs. SCE, the AgInS2 film (D3) has the highest capacitance and the logest lifetime.
In the future, the EIS analysis can be used to investigate Ag-In-S thin film photoelectrode with different [Ag]/[In] molar ratios, to realize the physical original of charge transfer process of such materials.
[1] 陳麗貞: 取之不盡、用之不竭的太陽能。 2010年,取自https://record.niet.gov.tw/Epaper/09933/3-3.html。
[2] Fujishima, A. and Honda K., “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, Vol 238, pp. 37-38, 1972.
[3] Kudo, A. and Miseki Y., “Heterogeneous photocatalyst materials for water splitting”, Chemical Society Reviews, Vol 38, pp. 253-278, 2009.
[4] Klahr, B., Gimenez S., Fabregat-Santiago F., Hamann T. and Bisquert J., “Water Oxidation at Hematite Photoelectrodes: The Role of Surface States”, Journal of the American Chemical Society, Vol 134, pp. 4294-4302, 2012.
[5] Vanmaekelbergh, D. and Cardon F., “On the impedance associate with electron-hole recombination in the space charge layer of an illuminated semiconductor/electrolyte interface”, Semiconductor Science and Technology, Vol 3, pp. 124, 1988.
[6] 蔡淑慧,半導體工程精選 = Semiconductor engineering,24-25頁,五南,臺北市,2007年。
[7] 吳錦貞,「I-III-VI/II-VI族可見光應答光觸媒材料之光電化學分析與水分解產氫應用」,國立中正大學,博士論文,2009。
[8] 蔡淑慧,半導體工程精選 = Semiconductor engineering,2頁,五南,臺北市,2007年。
[9] Gratzel, M., “Photoelectrochemical cells”, Nature, Vol 414, pp. 338-344, 2001.
[10] Shay, J. L., Tell B., Schiavone L. M., Kasper H. M. and Thiel F., “Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures”, Physical Review B, Vol 9, pp. 1719-1723, 1974.
[11] Delgado, G., Mora A. J., Pineda C. and Tinoco T., “Simultaneous Rietveld refinement of three phases in the Ag-In-S semiconducting system from X-ray powder diffraction”, Materials Research Bulletin, Vol 36, pp. 2507-2517, 2001.
[12] Ortega-Lopez, M., Morales-Acevedo A. and Solorza-Feria O., “Physical properties of AgInS2 films prepared by chemical spray pyrolysis”, Thin Solid Films, Vol 385, pp. 120-125, 2001.
[13] Chamberlin, R. R. and Skarman J. S., “Chemical Spray Deposition Process for Inorganic Films”, Journal of The Electrochemical Society, Vol 113, pp. 86-89, 1966.
[14] Pamplin, B. and Feigelson R. S., “Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds”, Thin Solid Films, Vol 60, pp. 141-146, 1979.
[15] Gorska, M., Beaulieu R., Loferski J. J. and Roessler B., “Spray pyrolysis of silver indium sulfides”, Thin Solid Films, Vol 67, pp. 341-345, 1980.
[16] Aguilera, M. L. A., Ortega-Lopez M., Resendiz V. M. S., Hernandez J. A. and Trujillo M. A. G., “Some physical properties of chalcopyrite and orthorhombic AgInS2 thin films prepared by spray pyrolysis”, Materials Science and Engineering: B, Vol 102, pp. 380-384, 2003.
[17] Sunil, M. A., Deepa K. G. and Nagaraju J., “Effect of sulphur variation in AgInS2 thin films prepared by chemical spray pyrolysis”, Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, 000174-000176, 2012.
[18] Makhova, L., Szargan R. and Konovalov I., “Investigation of the growth process and properties of CuIn5S8 and AgIn5S8 spinel thin films”, Thin Solid Films, Vol 472, pp. 157-163, 2005.
[19] Nakamura, S. and Seto S., “Optical properties of AgInS2 thin films prepared by sulfurization of evaporated metal precursors”, Physica Status Solidi (C), Vol 6, pp. 1137-1140, 2009.
[20] Pathan, H. M. and Lokhande C. D., “Chemical deposition and characterization of copper indium disulphide thin films”, Applied Surface Science, Vol 239, pp. 11-18, 2004.
[21] Patil, R. S., Lokhande C. D., Mane R. S., Pathan H. M., Joo O. S. and Han S. H., “Successive ionic layer adsorption and reaction (SILAR) trend for nanocrystalline mercury sulfide thin films growth”, Materials Science and Engineering: B, Vol 129, pp. 59-63, 2006.
[22] Akaki, Y., Komaki H., Yokoyama H., Yoshino K., Maeda K. and Ikari T., “Structural and optical characterization of Sb-doped CuInS2 thin films grown by vacuum evaporation method”, Journal of Physics and Chemistry of Solids, Vol 64, pp. 1863-1867, 2003.
[23] Akaki, Y., Kurihara S., Shirahama M., Tsurugida K., Seto S., Kakeno T. and Yoshino K., “Structural, electrical and optical properties of AgInS2 thin films grown by thermal evaporation method”, Journal of Physics and Chemistry of Solids, Vol 66, pp. 1858-1861, 2005.
[24] Thouin, L. and Vedel J., “Electrodeposition and Characterization of CulnSe2 Thin Films”, Journal of The Electrochemical Society, Vol 142, pp. 2996-3001, 1995.
[25] Wang, C. H., Cheng K. W. and Tseng C. J., “Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition”, Solar Energy Materials and Solar Cells, Vol 95, pp. 453-461, 2011.
[26] Tseng, C. J., Wang C. H. and Cheng K. W., “Photoelectrochemical performance of gallium-doped AgInS2 photoelectrodes prepared by electrodeposition process”, Solar Energy Materials and Solar Cells, Vol 96, pp. 33-42, 2012.
[27] Lokhande, C. D., Ennaoui A., Patil P. S., Giersig M., Diesner K., Muller M. and Tributsch H., “Chemical bath deposition of indium sulphide thin films: preparation and characterization”, Thin Solid Films, Vol 340, pp. 18-23, 1999.
[28] Lin, L. H., Wu C. C. and Lee T. C., “Growth of Crystalline AgIn5S8 Thin Films on Glass Substrates from Aqueous Solutions”, Crystal Growth & Design, Vol 7, pp. 2725-2732, 2007.
[29] Cheng, K. W. and Wang S. C., “Effects of complex agents on the physical properties of Ag–In–S ternary semiconductor films using chemical bath deposition”, Materials Chemistry and Physics, Vol 115, pp. 14-20, 2009.
[30] Cheng, K. W. and Wang S. C., “Influence of chelating agents on the growth and photoelectrochemical responses of chemical bath-synthesized AgIn5S8 film electrodes”, Solar Energy Materials and Solar Cells, Vol 93, pp. 307-314, 2009.
[31] Chang, W. S., Wu C. C., Jeng M. S., Cheng K. W., Huang C. M. and Lee T. C., “Ternary Ag–In–S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications”, Materials Chemistry and Physics, Vol 120, pp. 307-312, 2010.
[32] Cheng, K. W., Huang C. M., Huang Y. L., Chuang H. J. and Wu Y. C., “Photoelectrochemical performance of aluminum-doped AgIn5S8 electrodes created using chemical bath deposition”, Thin Solid Films, Vol 520, pp. 469-474, 2011.
[33] Cheng, K. W., Jhuang C. H. and Yeh L. Y., “Influence of gallium on the growth and photoelectrochemical performances of AgIn5S8 photoelectrodes”, Thin Solid Films, Vol 524, pp. 238-244, 2012.
[34] 黃銘賢,「超音波輔助化學水浴法製備 Ag-In-S 薄膜」,國立中正大學,2012。
[35] Application, G.: Basics of Electrochemical Impedance Spectroscopy。 2010年,取自http://www.gamry.com/assets/Application-Notes/Basics-of-EIS.pdf。
[36] Metrohm: Electrochemical Impedance Spectroscopy (EIS) Part 3 –Data Analysis 。 2011年,取自http://www.ecochemie.nl/download/Applicationnotes/Autolab_Application_Note_EIS03.pdf。
[37] Krishnan, R., “Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry”, Wiley-VCH Verlag GmbH & Co. KGaA, 2007.
[38] Metrohm,「Electrochemical Impedance Spectroscopy(EIS) Part 4 – Equivalent Circuit Models 」,2011。
[39] Kim, C. H., Kisiel K., Jung J., Ulanski J., Tondelier D., Geffroy B., Bonnassieux Y. and Horowitz G., “Persistent photoexcitation effect on the poly(3-hexylthiophene) film: Impedance measurement and modeling”, Synthetic Metals, Vol 162, pp. 460-465, 2012.
[40] Tomkiewicz, M., “Relaxation Spectrum Analysis of Semiconductor‐Electrolyte Interface ‐ TiO2”, Journal of The Electrochemical Society, Vol 126, pp. 2220-2225, 1979.
[41] Gassa, L. M., Mishima H. T., Lopez de Mishima B. A. and Vilche J. R., “An electrochemical impedance spectroscopy study of electrodeposited manganese oxide films in borate buffers”, Electrochimica Acta, Vol 42, pp. 1717-1723, 1997.
[42] Kim, S. H., Lim S. C., Lee J. H. and Zyung T., “Conduction mechanism of organic semiconductor AlQ3: Impedance spectroscopy analysis”, Current Applied Physics, Vol 5, pp. 35-37, 2005.
[43] Vanmaekelbergh, D. and Cardon F., “Calculation of the electrical impedance associated with the surface recombination of free carriers at an illuminated semiconductor/electrolyte interface”, Journal of Physics D: Applied Physics, Vol 19, pp. 643, 1986.
[44] Metikoš-Huković, M., Omanović S. and Jukić A., “Impedance spectroscopy of semiconducting films on tin electrodes”, Electrochimica Acta, Vol 45, pp. 977-986, 1999.
[45] Habibi, M. H., Talebian N. and Choi J.-H., “Characterization and photocatalytic activity of nanostructured indium tin oxide thin-film electrode for azo-dye degradation”, Thin Solid Films, Vol 515, pp. 1461-1469, 2006.
[46] 汪建民主編和凌永健著,材料分析 = Materials analysis,383-385頁,民全書局總經銷,臺北市,2005年。
[47] 汪建民主編和張華著,材料分析 = Materials analysis,659-660頁,民全書局總經銷,臺北市,2005年。
[48] Benno, G. and Joachim K., “Optical Properties of Thin Semiconductor Films”, 2003.
[49] Yu, Q., Yang H., Fu W., Chang L., Xu J., Yu C., Wei R., Du K., Zhu H., Li M. and Zou G., “Transparent conducting yttrium-doped ZnO thin films deposited by sol–gel method”, Thin Solid Films, Vol 515, pp. 3840-3843, 2007.
[50] Göde, F., Gümüş C. and Zor M., “Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method”, Journal of Crystal Growth, Vol 299, pp. 136-141, 2007.
[51] Goudarzi, A., Aval G. M., Sahraei R. and Ahmadpoor H., “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells”, Thin Solid Films, Vol 516, pp. 4953-4957, 2008.
[52] Zhong, Z. Y., Cho E. S. and Kwon S. J., “Characterization of the ZnS thin film buffer layer for Cu(In, Ga)Se2 solar cells deposited by chemical bath deposition process with different solution concentrations”, Materials Chemistry and Physics, Vol 135, pp. 287-292, 2012.
[53] Krol, R., “Principles of Photoelectrochemical Cells”, Springer US, 2012.
[54] Lin, L. H., Wu C. C., Lai C. H. and Lee T. C., “Controlled Deposition of Silver Indium Sulfide Ternary Semiconductor Thin Films by Chemical Bath Deposition”, Chemistry of Materials, Vol 20, pp. 4475-4483, 2008.
[55] Sachanyuk, V. P., Gorgut G. P., Atuchin V. V., Olekseyuk I. D. and Parasyuk O. V., “The Ag2S–In2S3–Si(Ge)S2 systems and crystal structure of quaternary sulfides Ag2In2Si(Ge)S6”, Journal of Alloys and Compounds, Vol 452, pp. 348-358, 2008.
[56] Pradhan, D., Kumar M., Ando Y. and Leung K. T., “Fabrication of ZnO Nanospikes and Nanopillars on ITO Glass by Templateless Seed-Layer-Free Electrodeposition and Their Field-Emission Properties”, ACS applied materials & interfaces, Vol 1, pp. 789-796, 2009.
[57] Hu, J. Q., Deng B., Tang K. B., Wang C. R. and Qian Y. T., “Preparation and phase control of nanocrystalline silver indium sulfides via a hydrothermal route”, Journal of Materials Research, Vol 16, pp. 3411-3415, 2001.
[58] Kudo, A., “Development of photocatalyst materials for water splitting”, International Journal of Hydrogen Energy, Vol 31, pp. 197-202, 2006.
[59] Kudo, A., Tsuji I. and Kato H., “AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation”, Chemical Communications, Vol 0, pp. 1958-1959, 2002.
[60] Tsuji, I., Kato H., Kobayashi H. and Kudo A., “Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures”, Journal of the American Chemical Society, Vol 126, pp. 13406-13413, 2004.
[61] Bott, A. W., “Electrochemistry of semiconductors”, Current Separations, Vol 17, pp. 87-92, 1998.
[62] Van de Krol, R., Goossens A. and Schoonman J., “Mott‐Schottky Analysis of Nanometer‐Scale Thin‐Film Anatase TiO2”, Journal of The Electrochemical Society, Vol 144, pp. 1723-1727, 1997.
[63] Radecka, M., Zakrzewska K., Wierzbicka M., Gorzkowska A. and Komornicki S., “Study of the TiO2–Cr2O3 system for photoelectrolytic decomposition of water”, Solid State Ionics, Vol 157, pp. 379-386, 2003.
[64] Loef, R., Houtepen A. J., Talgorn E., Schoonman J. and Goossens A., “Study of Electronic Defects in CdSe Quantum Dots and Their Involvement in Quantum Dot Solar Cells”, Nano Letters, Vol 9, pp. 856-859, 2009.
[65] Harrington, S. P. and Devine T. M., “Analysis of Electrodes Displaying Frequency Dispersion in Mott-Schottky Tests”, Journal of The Electrochemical Society, Vol 155, pp. C381-C386, 2008.
[66] Azumi, K., Ohtsuka T. and Sato N., “Mott‐Schottky Plot of the Passive Film Formed on Iron in Neutral Borate and Phosphate Solutions”, Journal of The Electrochemical Society, Vol 134, pp. 1352-1357, 1987.
[67] Harrington, S. P. and Devine T. M., “Relation Between the Semiconducting Properties of a Passive Film and Reduction Reaction Rates”, Journal of The Electrochemical Society, Vol 156, pp. C154-C159, 2009.
[68] Beach, J. D., “InxGa1-xN For Photoelectrochmical Water Splitting”, Colorado School of Mines, 2001.