跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭昭吟
Chao-Yin Kuo
論文名稱: 音頻拓樸對時間性音高知覺的影響
Tonotopic Effects on Temporal-Based Pitch Perception
指導教授: 阮啟弘
Chi-Hung Juan
謝宜蕙
I-Hui Hsieh
口試委員:
學位類別: 博士
Doctor
系所名稱: 生醫理工學院 - 認知與神經科學研究所
Graduate Institute of Cognitive and Neuroscience
論文出版年: 2025
畢業學年度: 114
語文別: 英文
論文頁數: 97
中文關鍵詞: 音頻拓樸調幅時間包絡音高知覺複合音轉置音全域希爾伯特頻譜分析
外文關鍵詞: tonotopy, amplitude modulation, temporal envelope, pitch perception, complex tones, transposed tone, Holo-Hilbert Spectral Analysis
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 音高知覺是語音理解、音樂欣賞以及聽覺場域分析中的關鍵因素。音高的產生大致來自兩個主要的機制理論:時間理論,源自神經元相位鎖定的放電模式以追蹤聲波的週期性;以及位置理論,源自耳蝸音頻拓樸(tonotopy)上的分佈。雖然兩種機制皆獲得支持,但它們的交互作用仍未被完全釐清,尤其在高頻音,調幅(AM)扮演更重要的角色。音訊中的調幅或包絡如何影響音高知覺,以及載波特性如何影響時間性音高 (time pitch),仍是未解之謎。 本研究使用轉置音(transposed tones),將位置(載波)與時間(包絡)線索分離,以探討音頻拓樸對時間性音高的影響。
    實驗一,包絡被轉置到 1至10 kHz 的高頻載波以及噪音載波上。透過音高辨別、音程辨別與旋律識別任務,我們確認高頻聲音中的時間包絡能引發強而明顯的音高知覺,其表現隨著載波頻率增加而提升,且在純音載波上優於噪音載波。這些結果顯示,時間包絡對音高知覺的重要性,及其所受音頻拓樸的影響。
    實驗二進一步檢驗多載波的轉置音。雖然諧波會產生基音的音高知覺,但此現象在轉置後並不存在。我們發現,轉置音的音高知覺乃是由最低頻載波的包絡週期性所決定的。此外,我們更發現,包絡頻率比載波更能決定轉置音的音高知覺。
    為了分析這些結果,我們採用全域希爾伯特頻譜分析(Holo-Hilbert Spectral Analysis, HHSA),這是一種非線性方法,特別適合分析非線性與非穩態訊號,能提供載波頻率與調幅頻率的二維呈現。結果顯示,HHSA 呈現出的主要調幅頻率與轉置音的音高知覺完全相符。
    總結而言,本研究證明了時間性的資訊(包絡)能夠在高頻聲音中提供強而明顯的音高知覺。同時,HHSA 提供一個良好的聽覺訊號分析,可以分析出與音高知覺相符的調幅頻率。這些基於轉置音實驗與 HHSA 的研究,不僅深化了在音高知覺中,音頻拓樸與時間訊息交互作用的理解,也為聽覺輔具的發展提出了新的方向。


    Pitch perception is essential to speech understanding, music appreciation, and auditory scene analysis. It arises from two complementary mechanisms: the time theory, derived from phase-locked neural firing patterns tracking waveform periodicity, and the place theory, derived from excitation along the cochlear tonotopic map. While both mechanisms are supported, their interaction remains unresolved, particularly in high-frequency hearing where amplitude modulation (AM) cues dominate. Although AM is preserved throughout the auditory system, how it contributes to pitch perception and how carrier properties shape temporal pitch remain open questions.
    This dissertation uses transposed tones, which dissociate spectral (carrier/place) and temporal (envelope/time) cues, to probe tonotopic influences on temporal-based pitch. In Experiment 1, AM envelopes were transposed onto carriers from 1 to 10 kHz and onto noise carriers. Pitch discrimination, interval discrimination, and melody identification tasks confirmed that temporal envelope fluctuations in high-frequency sounds evoke a robust pitch percept. Performance improved with increasing carrier frequency and was stronger for tonal than noise carriers. These findings indicate that pitch information provided by temporal envelope is more pronounced than previously assumed and shaped by tonotopic position.
    Experiment 2 extended this by examining transposed tones on multiple carriers. Though harmonic complexes normally produce a fundamental pitch, this phenomenon failed to preserved after transposition. We found the envelope periodicity on the lowest-frequency tonotopy dominates the pitch of transposed tones. Furthermore, we found pitch perception is driven more by envelope frequency than carrier spectrum in transposed tones.
    To analyze these results, we employed Holo-Hilbert Spectral Analysis (HHSA), a nonlinear method providing a two-dimensional representation of instantaneous frequency and AM. Unlike Fourier or wavelet analyses, HHSA is adaptive and suitable for nonlinear and non-stationary signals such as speech or music. HHSA consistently revealed the dominant AM frequency that matched perceived pitch.
    In summary, this work demonstrates that temporal envelope cues can support robust pitch perception at high frequencies. HHSA further provides a powerful analytic framework to reveal the AM dynamics underlying these percepts. These findings from transposed-tone experiments and HHSA advance understanding of the interplay between spectral and temporal coding in pitch perception and suggest new directions for auditory prosthetics.

    中文摘要: i Abstract: iii Lists of figures: vii List of tables: viii Chapter I General introduction: 1 Chapter II Literature review: 7 2-1 Tonotopic Effect on the Functionality of AM Signal: 7 2-2 Transposed Tones: 8 2-3 Measurement of Periodicity in Sound: 9 2-4 Musician Effect: 11 2-5 Holo-Hilbert Spectral Analysis: 13 Chapter III Experiment 1: 16 3-1 General Materials and Methods: 16 3-2 Materials and Methods in Each Experiment: 19 3-2-1 Experiment 1A: 19 3-2-2 Experiment 1B: 20 3-2-3 Experiment 1C: 23 3-3 Results: 26 3-3-1 Experiment 1A: 26 3-3-2 Experiment 1B: 28 3-3-3 Experiment 1C: 33 3-3-4 Modeling auditory periphery response to transposed tones: 36 Chapter IV Experiment 2: 40 4-1 Materials and Methods: 40 4-1-1 General Materials and Methods: 40 4-1-2 Experiment 2A: 43 4-1-3 Experiment 2B: 46 4-1-4 Experiment 2C: 49 4-1-5 Experiment 2D: 50 4-1-6 Experiment 2E: 50 4-1-7 Autocorrelation model: 52 4-1-8 Holo-Hilbert Spectral Analysis (HHSA): 53 4-2 Results: 54 4-2-1 Experiment 2A: 54 4-2-2 Experiment 2B-2D: 56 4-2-3 Experiment 2E: 57 4-2-4 Temporal information presented in HHSA.: 60 Chapter V Discussion: 62 5-1 The salience of temporal pitch information in high- frequency sound: 62 5-2 Time pitch shaped by tonotopy: 64 5-3 The pitch perception of transposed tone on multiple carriers: 65 5-4 The role of Holo-Hilbert Spectral Analysis: 67 5-5 Potential applications: 75 Chapter VI Conclusions: 78 References: 80

    Abrams, E. B., Marantz, A., Krementsov, I., & Gwilliams, L. (2025). Dynamics of pitch perception in the auditory cortex. J Neurosci., 45(12). https://doi.org/10.1523/JNEUROSCI.1111-24.2025

    Baskent, D., & Gaudrain, E. (2016). Musician advantage for speech-on-speech perception. J. Acoust. Soc. Am., 139(3), EL51-56. https://doi.org/10.1121/1.4942628

    Baumann, U., & Nobbe, A. (2004). Pulse rate discrimination with deeply inserted electrode arrays. Hear. Res., 196(1-2), 49-57. https://doi.org/10.1016/j.heares.2004.06.008

    Bernstein, J. G., & Oxenham, A. J. (2005). An autocorrelation model with place dependence to account for the effect of harmonic number on fundamental frequency discrimination. J. Acoust. Soc. Am., 117(6), 3816-3831. https://doi.org/10.1121/1.1904268

    Bernstein, L. R. (2001). Auditory processing of interaural timing information: new insights. J. Neurosci. Res., 66(6), 1035-1046. https://doi.org/10.1002/jnr.10103

    Bernstein, L. R., & Trahiotis, C. (2002). Enhancing sensitivity to interaural delays at high frequencies by using "transposed stimuli". J. Acoust. Soc. Am., 112(3), 1026-1036. https://www.ncbi.nlm.nih.gov/pubmed/12243151

    Bianchi, F., Santurette, S., Wendt, D., & Dau, T. (2016). Pitch discrimination in musicians and non-musicians: Effects of harmonic resolvability and processing effort. J. Assoc. Res. Otolaryngol., 17(1), 69-79. https://www.ncbi.nlm.nih.gov/pubmed/26637239

    Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2011). Musicians and tone-language speakers share enhanced brainstem encoding but not perceptual benefits for musical pitch. Brain Cogn, 77(1), 1-10. https://doi.org/10.1016/j.bandc.2011.07.006

    Bidelman, G. M., Krishnan, A., & Gandour, J. T. (2011). Enhanced brainstem encoding predicts musicians' perceptual advantages with pitch. Eur. J. Neurosci., 33(3), 530-538. https://doi.org/10.1111/j.1460-9568.2010.07527.x

    Bierer, J. A., & Middlebrooks, J. C. (2002). Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration. J. Neurophysiol., 87(1), 478-492. https://doi.org/https://doi.org/10.1152/jn.00212.2001

    Boebinger, D., Evans, S., Rosen, S., Lima, C. F., Manly, T., & Scott, S. K. (2015). Musicians and non-musicians are equally adept at perceiving masked speech. J. Acoust. Soc. Am., 137(1), 378-387. https://doi.org/10.1121/1.4904537

    Carcagno, S., Lakhani, S., & Plack, C. J. (2019). Consonance perception beyond the traditional existence region of pitch. J. Acoust. Soc. Am., 146(4), 2279-2290. https://doi.org/10.1121/1.5127845

    Carney, L. H., Li, T., & McDonough, J. M. (2015). Speech coding in the brain: representation of vowel formants by midbrain neurons tuned to sound fluctuations. eNeuro, 2(4). https://doi.org/10.1523/ENEURO.0004-15.2015

    Cedolin, L., & Delgutte, B. (2010). Spatiotemporal representation of the pitch of harmonic complex tones in the auditory nerve. J Neurosci., 30(38), 12712-12724. https://doi.org/https://doi.org/10.1523/JNEUROSCI.6365-09.2010

    Coffey, E., Herholz, S., Scala, S., & Zatorre, R. (2011). Montreal Music History Questionnaire: a tool for the assessment of music-related experience in music cognition research. The neurosciences and music IV: Learning and memory, Conference. Edinburgh, UK.

    Coffey, E. B., Herholz, S. C., Chepesiuk, A. M., Baillet, S., & Zatorre, R. J. (2016). Cortical contributions to the auditory frequency-following response revealed by MEG. Nat. Commun., 7, 11070. https://doi.org/10.1038/ncomms11070

    Coffey, E. B. J., Nicol, T., White-Schwoch, T., Chandrasekaran, B., Krizman, J., Skoe, E., . . . Kraus, N. (2019). Evolving perspectives on the sources of the frequency-following response. Nat. Commun., 10(1), 5036. https://doi.org/10.1038/s41467-019-13003-w

    Dau, T., Verhey, J., & Kohlrausch, A. (1999). Intrinsic envelope fluctuations and modulation-detection thresholds for narrow-band noise carriers. J. Acoust. Soc. Am., 106(5), 2752-2760. https://doi.org/10.1121/1.428103

    Dreyer, A., & Delgutte, B. (2006). Phase locking of auditory-nerve fibers to the envelopes of high-frequency sounds: implications for sound localization. J. Neurophysiol., 96(5), 2327-2341. https://doi.org/https://doi.org/10.1152/jn.00326.2006

    Fielden, C. A., Kluk, K., & McKay, C. M. (2013). Place specificity of monopolar and tripolar stimuli in cochlear implants: the influence of residual masking. J. Acoust. Soc. Am., 133(6), 4109-4123. https://doi.org/10.1121/1.4803909

    Fishbach, A., Nelken, I., & Yeshurun, Y. (2001). Auditory edge detection: a neural model for physiological and psychoacoustical responses to amplitude transients. J Neurophysiol., 85(6), 2303-2323. https://doi.org/10.1152/jn.2001.85.6.2303

    Glasberg, B. R., & Moore, B. C. J. (1990). Derivation of auditory filter shapes from notched-noise data. Hear. Res., 47(1-2), 103-138. https://doi.org/10.1016/0378-5955(90)90170-T

    Gockel, H. E., & Carlyon, R. P. (2018). Detection of mistuning in harmonic complex tones at high frequencies. Acta acust. united Acust., 104(5), 766-769. https://doi.org/10.3813/AAA.919219

    Gockel, H. E., Carlyon, R. P., Mehta, A., & Plack, C. J. (2011). The frequency following response (FFR) may reflect pitch-bearing information but is not a direct representation of pitch. J. Assoc. Res. Otolaryngol., 12(6), 767-782. https://doi.org/10.1007/s10162-011-0284-1

    Greenwood, D. D. (1990). A cochlear frequency-position function for several species—29 years later. J. Acoust. Soc. Am., 87(6), 2592-2605. https://doi.org/10.1121/1.399052

    Henning, G. B. (1974). Detectability of interaural delay in high-frequency complex waveforms. J. Acoust. Soc. Am., 55(1), 84-90. https://doi.org/https://doi.org/10.1121/1.1928135

    Holdsworth, J., Nimmo-Smith, I., Patterson, R., & Rice, P. (1988). Implementing a gammatone filter bank. In SVOS Final Report: Part A: The Auditory Filterbank (Vol. 1, pp. 1-5). University of Cambridge.

    Holmes, E., Kinghorn, E. E., McGarry, L. M., Busari, E., Griffiths, T. D., & Johnsrude, I. S. (2022). Pitch discrimination is better for synthetic timbre than natural musical instrument timbres despite familiarity. J. Acoust. Soc. Am., 152(1), 31-42. https://www.ncbi.nlm.nih.gov/pubmed/35931555

    Hsieh, I.-H., & Saberi, K. (2016). Imperfect pitch: Gabor’s uncertainty principle and the pitch of extremely brief sounds. Psychonomic bulletin & review, 23(1), 163-171. https://doi.org/https://doi.org/10.3758/s13423-015-0863-y

    Hsieh, I. H., & Liu, J. W. (2019). A novel signal processing approach to auditory phantom perception. Psychon. Bull. Rev., 26(1), 250-260. https://doi.org/10.3758/s13423-018-1513-y

    Hsieh, I. H., & Saberi, K. (2008). Dissociation of procedural and semantic memory in absolute-pitch processing. Hear. Res., 240(1), 73-79. https://doi.org/10.1016/j.heares.2008.01.017

    Huang, N. E., Hu, K., Yang, A. C., Chang, H. C., Jia, D., Liang, W. K., . . . Wu, Z. (2016). On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data. Philos. Trans. R. Soc., 374(2065), 20150206. https://doi.org/10.1098/rsta.2015.0206

    Johnson, N., Shiju, A. M., Parmar, A., & Prabhu, P. (2021). Evaluation of auditory stream segregation in musicians and nonmusicians. Int. Arch. Otorhinolaryngol., 25(1), e77-e80. https://doi.org/10.1055/s-0040-1709116

    Johnson, S. L. (2015). Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding. Elife, 4. https://doi.org/10.7554/eLife.08177

    Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiol. Rev., 84(2), 541-577. https://doi.org/https://doi.org/10.1152/physrev.00029.2003

    Juan, C.-H., Nguyen, K. T., Liang, W.-K., Quinn, A. J., Chen, Y.-H., Muggleton, N. G., . . . Huang, N. E. (2021). Revealing the dynamic nature of amplitude modulated neural entrainment with Holo-Hilbert Spectral Analysis. Front. Neurosci., 15. https://doi.org/10.3389/fnins.2021.673369

    Krizman, J., & Kraus, N. (2019). Analyzing the FFR: a tutorial for decoding the richness of auditory function. Hear. Res., 382, 107779. https://doi.org/10.1016/j.heares.2019.107779

    Laguitton, V., Demany, L., Semal, C., & Liégeois-Chauvel, C. (1998). Pitch perception: a difference between right- and left-handed listeners. Neuropsychologia., 36(3), 201-207. https://doi.org/10.1016/s0028-3932(97)00122-x

    Langner, G., Sams, M., Heil, P., & Schulze, H. (1997). Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography. J. Comp. Physiol. A., 181, 665-676. https://doi.org/10.1007/s003590050148

    Lee, K. M., Skoe, E., Kraus, N., & Ashley, R. (2009). Selective subcortical enhancement of musical intervals in musicians. J Neurosci., 29(18), 5832-5840. https://www.ncbi.nlm.nih.gov/pubmed/19420250

    Levitt, H. (1971). Transformed up‐down methods in psychoacoustics. J. Acoust. Soc. Am., 49(2B), 467-477. https://doi.org/10.1121/1.1912375

    Lunden, A. (2017). Syllable weight and duration: a rhyme/intervals comparison. Proc. Ling. Soc. Am., 2. https://doi.org/10.3765/plsa.v2i0.4084

    Luo, X., Masterson, M. E., & Wu, C. C. (2014). Melodic interval perception by normal-hearing listeners and cochlear implant users. J. Acoust. Soc. Am., 136(4), 1831-1844. https://pubmed.ncbi.nlm.nih.gov/25324084

    Madsen, S. M. K., Whiteford, K. L., & Oxenham, A. J. (2017). Musicians do not benefit from differences in fundamental frequency when listening to speech in competing speech backgrounds. Sci. Rep., 7(1), 12624. https://doi.org/10.1038/s41598-017-12937-9

    Malone, B. J., Scott, B. H., & Semple, M. N. (2010). Temporal codes for amplitude contrast in auditory cortex. J. Neurosci., 30(2), 767-784. https://doi.org/10.1523/JNEUROSCI.4170-09.2010

    McClaskey, C. M. (2017). Standard-interval size affects interval-discrimination thresholds for pure-tone melodic pitch intervals. Hear. Res., 355, 64-69. https://doi.org/10.1016/j.heares.2017.09.008

    McDermott, H. J. (2004). Music perception with cochlear implants: a review. Trends Amplif., 8(2), 49-82. https://doi.org/10.1177/108471380400800203

    McKay, C. M., McDermott, H. J., & Clark, G. M. (1996). The perceptual dimensions of single‐electrode and nonsimultaneous dual‐electrode stimuli in cochlear implantees. J. Acoust. Soc. Am., 99(2), 1079-1090. https://doi.org/https://doi.org/10.1121/1.414594

    Meddis, R., & Hewitt, M. J. (1991a). Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. J. Acoust. Soc. Am., 89(6), 2866-2882. https://doi.org/10.1121/1.400725

    Meddis, R., & Hewitt, M. J. (1991b). Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II: Phase sensitivity. J. Acoust. Soc. Am., 89(6), 2883-2894. https://doi.org/10.1121/1.400726

    Meddis, R., & O’Mard, L. (1997). A unitary model of pitch perception. J. Acoust. Soc. Am., 102(3), 1811-1820. https://doi.org/10.1121/1.420088

    Mehta, A. H., & Oxenham, A. J. (2020). Effect of lowest harmonic rank on fundamental-frequency difference limens varies with fundamental frequency. J. Acoust. Soc. Am., 147(4), 2314. https://doi.org/10.1121/10.0001092

    Micheyl, C., Delhommeau, K., Perrot, X., & Oxenham, A. J. (2006). Influence of musical and psychoacoustical training on pitch discrimination. Hear. Res., 219(1-2), 36-47. https://www.ncbi.nlm.nih.gov/pubmed/16839723

    Monaghan, J. J., Bleeck, S., & McAlpine, D. (2015). Sensitivity to envelope interaural time differences at high modulation rates. Trends Hear., 19, 2331216515619331. https://www.ncbi.nlm.nih.gov/pubmed/26721926

    Moore, B. C. (2003). Coding of sounds in the auditory system and its relevance to signal processing and coding in cochlear implants. Otol. Neurotol., 24(2), 243-254. https://doi.org/10.1097/00129492-200303000-00019

    Moore, B. C., & Ernst, S. M. (2012). Frequency difference limens at high frequencies: evidence for a transition from a temporal to a place code. J. Acoust. Soc. Am., 132(3), 1542-1547. https://doi.org/10.1121/1.4739444

    Moore, B. C. J., & Carlyon, R. P. (2005). Perception of pitch by people with cochlear hearing loss and by cochlear implant users. In P. CJ, O. AJ, F. RR, & P. AN (Eds.), Pitch: Neural Coding and Perception (pp. 234-277). Springer New York. https://doi.org/10.1007/0-387-28958-5_7

    Moore, B. C. J., & Sek, A. (2009). Sensitivity of the human auditory system to temporal fine structure at high frequencies. J. Acoust. Soc. Am., 125(5), 3186-3193. https://www.ncbi.nlm.nih.gov/pubmed/19425661

    Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc. Natl. Acad. Sci. USA, 104(40), 15894-15898. https://doi.org/https://doi.org/10.1073/pnas.0701498104

    Musacchia, G., Strait, D., & Kraus, N. (2008). Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hear. Res., 241(1-2), 34-42. https://www.ncbi.nlm.nih.gov/pubmed/18562137

    Nguyen, K. T., Liang, W. K., Lee, V., Chang, W. S., Muggleton, N. G., Yeh, J. R., . . . Juan, C. H. (2019). Unraveling nonlinear electrophysiologic processes in the human visual system with full dimension spectral analysis. Sci. Rep., 9(1), 16919. https://doi.org/10.1038/s41598-019-53286-z

    Nuttall, A. L., Ricci, A. J., Burwood, G., Harte, J. M., Stenfelt, S., Caye-Thomasen, P., . . . Fridberger, A. (2018). A mechanoelectrical mechanism for detection of sound envelopes in the hearing organ. Nat. Commun., 9(1), 4175. https://doi.org/10.1038/s41467-018-06725-w

    Oganian, Y., & Chang, E. F. (2019). A speech envelope landmark for syllable encoding in human superior temporal gyrus. Sci. Adv., 5(11), eaay6279. https://doi.org/10.1126/sciadv.aay6279

    Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/10.1016/0028-3932(71)90067-4

    Oxenham, A. J. (2012). Pitch perception. J. Neurosci., 32(39), 13335-13338. https://doi.org/10.1523/JNEUROSCI.3815-12.2012

    Oxenham, A. J. (2022). Questions and controversies surrounding the perception and neural coding of pitch. Front. Neurosci., 16, 1074752. https://doi.org/10.3389/fnins.2022.1074752

    Oxenham, A. J., Bernstein, J. G. W., & Penagos, H. (2004). Correct tonotopic representation is necessary for complex pitch perception. Proc. Natl. Acad. Sci. USA, 101(5), 1421-1425. http://www.pnas.org/content/101/5/1421.abstract

    Oxenham, A. J., Micheyl, C., Keebler, M. V., Loper, A., & Santurette, S. (2011). Pitch perception beyond the traditional existence region of pitch. Proc. Natl. Acad. Sci. USA, 108(18), 7629-7634. https://doi.org/10.1073/pnas.1015291108

    Palmer, A. R., & Russell, I. J. (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear. Res., 24(1), 1-15. https://doi.org/https://doi.org/10.1016/0378-5955(86)90002-x

    Parbery-Clark, A., Skoe, E., Lam, C., & Kraus, N. (2009). Musician enhancement for speech-in-noise. Ear Hear., 30(6), 653-661. https://doi.org/https://doi.org/10.1097/AUD.0b013e3181b412e9

    Rabiner, L. (1977). On the use of autocorrelation analysis for pitch detection. IEEE Trans. Signal Process., 25(1), 24-33. https://doi.org/doi: 10.1109/TASSP.1977.1162905.

    Ritsma, R. J. (1962). Existence region of the tonal residue. J. Acoust. Soc. Am., 34, 1224-1229. https://doi.org/10.1121/1.1918307

    Robles, L., & Ruggero, M. A. (2001). Mechanics of the mammalian cochlea. Physiol. Rev., 81(3), 1305-1352. https://doi.org/10.1152/physrev.2001.81.3.1305

    Rubinstein, J. T., Wilson, B. S., Finley, C. C., & J., A. P. (1999). Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear. Res., 127(1-2), 108-118. https://doi.org/10.1016/s0378-5955(98)00185-3

    Ruggles, D. R., Freyman, R. L., & Oxenham, A. J. (2014). Influence of musical training on understanding voiced and whispered speech in noise. PloS one, 9(1), e86980. https://doi.org/10.1371/journal.pone.0086980

    Russo, F. A., & Thompson, W. F. (2005). An interval size illusion: the influence of timbre on the perceived size of melodic intervals. Percept Psychophys., 67(4), 559-568. https://doi.org/10.3758/bf03193514

    Saddler, M. R., Gonzalez, R., & McDermott, J. H. (2021). Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception. Nat. Commun., 12(1), 7278. https://doi.org/10.1038/s41467-021-27366-6

    Schatzer, R., Vermeire, K., Visser, D., Krenmayr, A., Kals, M., Voormolen, M., . . . Zierhofer, C. (2014). Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: frequency-place functions and rate pitch. Hear. Res., 309, 26-35. https://doi.org/10.1016/j.heares.2013.11.003

    Schouten, J. F., Ritsma, R. J., & Cardozo, B. L. (1962). Pitch of the residue. J. Acoust. Soc. Am., 34, 1418-1424. https://doi.org/10.1121/1.1918360

    Shah, S., Walters, R., Langlie, J., Davies, C., Finberg, A., Tuset, M. P., . . . Eshraghi, A. A. (2022). Systematic review of cochlear implantation in patients with inner ear malformations. PloS one, 17(10), e0275543. https://doi.org/10.1371/journal.pone.0275543

    Shahin, A. J. (2011). Neurophysiological influence of musical training on speech perception. Front. Psychol., 2, 126. https://doi.org/10.3389/fpsyg.2011.00126

    Shamma, S., & Klein, D. (2000). The case of the missing pitch templates: how harmonic templates emerge in the early auditory system. J. Acoust. Soc. Am., 107(5), 2631-2644. https://doi.org/10.1121/1.428649

    Shamma, S. A. (1985). Speech processing in the auditory system. II: Lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J. Acoust. Soc. Am., 78, 1622-1632. https://doi.org/10.1121/1.392800

    Shera, C. A., Guinan, J. J., & Oxenham, A. J. (2002). Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc. Natl. Acad. Sci. USA, 99, 3318-3323. https://doi.org/10.1073/pnas.032675099

    Song, X. D., Osmanski, M. S., Guo, Y. Q., & Wang, X. Q. (2016). Complex pitch perception mechanisms are shared by humans and a New World monkey. Proc. Natl. Acad. Sci. USA, 113(3), 781-786. http://www.pnas.org/content/113/3/781.abstract

    Swaminathan, J., Mason, C. R., Streeter, T. M., Best, V., Kidd, G., Jr., & Patel, A. D. (2015). Musical training, individual differences and the cocktail party problem. Sci. Rep., 5, 11628. https://doi.org/10.1038/srep11628

    Temchin, A. N., & Ruggero, M. A. (2010). Phase-locked responses to tones of chinchilla auditory nerve fibers: implications for apical cochlear mechanics. J. Assoc. Res. Otolaryngol., 11(2), 297-318. https://doi.org/10.1007/s10162-009-0197-4

    Távora-Vieira, D., & Rajan, G. P. (2014). Assessment of fine structure processing strategies in unilaterally deafened cochlear implant users. Int J Otorhinolaryngol Head Neck Surg., 03(06), 347-353. https://doi.org/10.4236/ijohns.2014.36062

    Tong, Y. C., Blamey, P. J., Dowell, R. C., & Clark, G. M. (1983). Psychophysical studies evaluating the feasibility of a speech processing strategy for a multiple-channel cochlear implant. J. Acoust. Soc. Am., 74(1), 73-80. https://doi.org/https://doi.org/10.1121/1.389620

    van de Par, S., & Kohlrausch, A. (1997). A new approach to comparing binaural masking level differences at low and high frequencies. J. Acoust. Soc. Am., 101(3), 1671-1680. https://doi.org/10.1121/1.418151

    Veale, J. (2013). Edinburgh Handedness Inventory - short form: a revised version based on confirmatory factor analysis. Laterality, 19(2), 164-177. https://doi.org/https://doi.org/10.1080/1357650X.2013.783045

    Verschooten, E., Shamma, S., Oxenham, A. J., Moore, B. C. J., Joris, P. X., Heinz, M. G., & Plack, C. J. (2019). The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints. Hear. Res., 377, 109-121. https://www.sciencedirect.com/science/article/pii/S0378595518305604

    Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat. Neurosci., 10(4), 420-422. https://doi.org/10.1038/nn1872

    Zarate, J. M., Ritson, C. R., & Poeppel, D. (2013). The effect of instrumental timbre on interval discrimination. PloS one, 8(9), e75410. https://doi.org/10.1371/journal.pone.0075410

    Zeng, F. G. (2002). Temporal pitch in electric hearing. Hear. Res., 174(1-2), 101-106. https://doi.org/10.1016/s0378-5955(02)00644-5

    Zhang, C., Li, B., Chen, S., & Yang, Y. (2018). Acoustic analysis of whispery voice disguise in Mandarin Chinese. Proc. Interspeech 2018, 1413-1416. http://doi.org/10.21437/Interspeech.2018-2598

    Zheng, Y., & Escabi, M. A. (2008). Distinct roles for onset and sustained activity in the neuronal code for temporal periodicity and acoustic envelope shape. J. Neurosci., 28(52), 14230-14244. https://doi.org/10.1523/JNEUROSCI.2882-08.2008

    QR CODE
    :::