| 研究生: |
陳鈞澤 Jiun-Tze Chen |
|---|---|
| 論文名稱: |
利用IBM_VDRAS分析TASSE實驗期間劇烈午後雷暴降水事件:2019年7月22日個案分析 IBM_VDRAS analysis of a severe afternoon thunderstorm event during TAipei Summer Storm Experiment (TASSE) on 22 July 2019 |
| 指導教授: |
廖宇慶
Yu-Chieng Liou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 午後對流 、胞合併 、資料同化 |
| 外文關鍵詞: | Cell merge |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
2019年TASSE於6、7月展開,其中2019年7月22日午後雷暴事件,造成台北都會區淹水,降雨中心在大安森林公園測站,最大降水時雨量接近200 mmhr^(-1),本研究利用IBM_VDRAS(Variational Doppler Radar Analysis System based on immersed boundary method)系統、中央氣象局測站以及台灣大學storm tracker觀測資料對此個案進行分析。
分析結果顯示,初始階段海風將暖濕空氣帶入內陸,在桃園、新竹以及雙北山區形成零星對流胞,發展階段各對流胞包圍台北盆地,冷池外流加上地形效應使得台北盆地中心輻合狀況良好,加上中層水氣充足以及條件不穩定,此時台北盆地環境十分有利對流生成,至成熟階段時,主要對流於台北盆地中心(大安森林公園)上空長起,在後續的一個小時下了超過100毫米的累積降水,期間經歷了胞合併,使得上升運動增強,並延長強降水時間,造成大安森林公園周邊地區淹水,到了消散階段,台北盆地改吹陸風,盆地中心由輻合場轉為輻散,且中心地表為下沉運動,新的對流經台北盆地西南方往桃園、新竹傳遞。
本研究亦利用IBM_VDRAS分析場計算發展、成熟、消散階段時,此午後雷暴個案在視熱源(Q1)以及視水氣匯(Q2)的垂直分佈,結果顯示Q1呈單峰結構,在成熟期最大加熱高度約在5km(575mb) 左右,大小約在3~4(_^o)C/hr,Q2在成熟期呈現雙峰結構,底層最大乾化高度約在1.75km(824mb),大小約在4(_^o)C/hr,上層最大乾化高度約在5.25km(540mb)左右,大小在3~4(_^o)C/hr。
從結果來看,IBM_VDRAS藉由同化雷達資料,得到完整的的三維氣象場,可以清楚分析對流胞傳遞、合併時,垂直剖面的變化,以及水氣、雨水混合比等參數的定量變化,也可以得到午後雷暴發展、成熟、消散期Q1、Q2的垂直分佈,是非常好的分析工具。
During the TASSE(Taipei Summer Storm Experiment), a severe afternoon thunderstorm developed within Taipei basin on 22 July 2019, which produced intense rainfall in Daan Forest Park(max rainfall rate ~ 200mm hr-1) and caused urban-scale flooding. This study utilized IBM_VDRAS (Variational Doppler Radar Analysis System based on immersed boundary method), radar data, CWB weather station data and stormtracker data to analysis this case
At initial stage, sea breeze brought moist air into inland, and caused convection initiation at mountain region of Taipei, Taoyuan, Hsinchu. At developing stage, The environment was suitable for main convection developing because 1).Taipei basin was surrounded by scattered convection, the outflow of these convection converged with sea breeze and terrain, 2).sufficient mid-level water vapor and conditional unstable environment. At mature stage, the main convection initiated at center of Taipei basin and produced over 100mm accumulated precipitation within one hour, cell merge happened at this stage and increased the vertical velocity, extended the lifetime of this main convection, also caused a severe flooding in Daan Forest Park and its adjacent areas. At dissipation stage, land breeze happened, the divergence filed of Taipei basin center transformed from convergence to divergence, and new initiated convection propagated from Taipei basin to Taoyuan and Hsinchu.
This study also took advantage of IBM_VDRAS three-dimensional analysis to calculate the developing, mature and dissipation stage Q1, Q2 vertical profile, which could analyze the relationship between this afternoon thunderstorm case and environment. The result showed that Q1 had one peak pattern with max heating layer about 5km(575mb) on mature stage, Q2 had double peak pattern with low level max drying layer about 1.75km(824mb) and high level max drying layer about 5.25km(540mb) .
From the result we mentioned, by assimilating radar data, IBM_VDRAS is a very powerful ,useful system which can retrieve analysis well, and can help us to analyze the process of cell propagation , cell merge and other parameter quantitatively .
吳英璋, 2019. 對IBM_VDRAS四維變分資料同化系統的改進以及在探討複雜地形上劇烈降雨過程的應用:北台灣午後對流個案分析, National Central University.
陳依涵, 2016. 發展地面資料同化方法以改善都卜勒雷達變分分析系統之分析及預報能力, National Central University.
黃熠程, 2017. 四維變分資料同化系統與衛星資料整合以重建台灣與周圍地區的高解析度氣象場, National Central University.
繆炯恩 and 楊明仁, 2018. 2015 年 6 月 14 日台北盆地劇烈午後雷暴個案研究: 對流胞合併機制與強降雨過程探討. 大氣科學, 46(4): 427-454.
羅翊銓, 2019. IBM_VDRAS系統功能的擴充與個案模擬- 以2017年7月7日午後對流為例, National Central University.
Chang, S.-F., Liou, Y.-C., Sun, J. and Tai, S.-L., 2016. The implementation of the ice-phase microphysical process into a four-dimensional Variational Doppler Radar Analysis System (VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting. Journal of the Atmospheric Sciences, 73(3): 1015-1038.
Chen, T.-C., Wang, S.-Y. and Yen, M.-C., 2007. Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei. Journal of Applied Meteorology and Climatology, 46(9): 1324-1340.
Chen, T.-C., Yen, M.-C., Tsay, J.-D., Liao, C.-C. and Takle, E.S., 2014. Impact of afternoon thunderstorms on the land–sea breeze in the Taipei basin during summer: An experiment. Journal of Applied Meteorology and Climatology, 53(7): 1714-1738.
Chen, T.-J. and Chen, L.-F., 1988. 1985年與1986年暖季西太平洋高層冷心低壓之初步分析. 臺北市: 交通部中央氣象局, pp. 605-616.
Crook, N.A. and Sun, J., 2002. Assimilating radar, surface, and profiler data for the Sydney 2000 Forecast Demonstration Project. Journal of atmospheric and oceanic technology, 19(6): 888-898.
Esbensen, S.K., Wang, J.-T. and Tollerud, E.I., 1988. A composite life cycle of nonsquall mesoscale convective systems over the tropical ocean. Part II: Heat and moisture budgets. Journal of the atmospheric sciences, 45(3): 537-548.
Franke, R., 1982. Scattered data interpolation: tests of some methods. Mathematics of computation, 38(157): 181-200.
Friedrich, K. et al., 2016. Raindrop size distribution and rain characteristics during the 2013 Great Colorado Flood. Journal of Hydrometeorology, 17(1): 53-72.
Johnson, R.H., 1976. The role of convective-scale precipitation downdrafts in cumulus and synoptic-scale interactions. Journal of the Atmospheric Sciences, 33(10): 1890-1910.
Johnson, R.H., 1984. Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Monthly weather review, 112(8): 1590-1601.
Johnson, R.H. and Young, G.S., 1983. Heat and moisture budgets of tropical mesoscale anvil clouds. Journal of the atmospheric sciences, 40(9): 2138-2147.
Kessler, E., 1969. On the distribution and continuity of water substance in atmospheric circulations, On the distribution and continuity of water substance in atmospheric circulations. Springer, pp. 1-84.
Kuo, K.-T. and Wu, C.-M., 2019. The precipitation hotspots of afternoon thunderstorms over the Taipei Basin: Idealized numerical simulations. Journal of the Meteorological Society of Japan. Ser. II.
Lewis, J.M., 1975. Test of the Ogura-Cho Model on a-Prefrontal Squall Line Case. Monthly Weather Review, 103(9): 764-778.
Lin, P.-F., Chang, P.-L., Jou, B.J.-D., Wilson, J.W. and Roberts, R.D., 2011. Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Weather and forecasting, 26(1): 44-60.
Marshall, J.S. and Palmer, W.M.K., 1948. The distribution of raindrops with size. Journal of meteorology, 5(4): 165-166.
Miao, J.-E. and Yang, M.-J., 2020. A modeling study of the severe afternoon thunderstorm event at Taipei on 14 June 2015: The roles of sea breeze, microphysics, and terrain. Journal of the Meteorological Society of Japan. Ser. II.
Miller, M. and Pearce, R., 1974. A three‐dimensional primitive equation model of cumulonimbus convection. Quarterly Journal of the royal meteorological society, 100(424): 133-154.
Ninomiya, K., 1971. Dynamical analysis of outflow from tornado-producing thunderstorms as revealed by ATS III pictures. Journal of Applied Meteorology and Climatology, 10(2): 275-294.
Sun, J., Chen, M. and Wang, Y., 2010. A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 forecast demonstration project. Weather and forecasting, 25(6): 1715-1735.
Sun, J. and Crook, N.A., 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. Journal of the Atmospheric Sciences, 54(12): 1642-1661.
Sun, J. and Crook, N.A., 1998. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. Journal of the Atmospheric Sciences, 55(5): 835-852.
Sun, J. and Crook, N.A., 2001. Real-time low-level wind and temperature analysis using single WSR-88D data. Weather and Forecasting, 16(1): 117-132.
Tai, S.-L., Liou, Y.-C., Sun, J. and Chang, S.-F., 2017. The development of a terrain-resolving scheme for the forward model and its adjoint in the four-dimensional Variational Doppler Radar Analysis System (VDRAS). Monthly Weather Review, 145(1): 289-306.
Tripoli, G.J. and Cotton, W.R., 1981. The use of lce-liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Monthly Weather Review, 109(5): 1094-1102.
Tseng, Y.-H. and Ferziger, J.H., 2003. A ghost-cell immersed boundary method for flow in complex geometry. Journal of computational physics, 192(2): 593-623.
Yanai, M., Esbensen, S. and Chu, J.-H., 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. Journal of the Atmospheric Sciences, 30(4): 611-627.