| 研究生: |
張智泓 Chih-hung Chang |
|---|---|
| 論文名稱: |
民航客機機翼前緣整流罩之超速塑成型製程研究 Superplastic Forming Processes Research of Commercial Airliner Wing’s Leading Edge Fairing Covers |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 整流罩 、壓力-時間成形曲線 、超塑成形 、5083鋁合金 |
| 外文關鍵詞: | Pressure-time curve, Aluminum alloy 5083, Superplastic forming, Fairing cover |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
常見的超塑性製程多以平板直接吹氣成形,且成形形狀都呈簡易對稱之形狀、少有曲面複雜且幾何外型不對稱之實際工件製作,本論文即以飛機製造業使用之鋁合金蒙皮零件“機翼前緣整流罩”為超塑成形之研究主角,且在執行超塑成形前將先加入材料的折彎預成形加工,過程中使用5083鋁合金並應用計算之壓力-時間成形曲線來作超塑成形、除了折彎預成形製程外、同時嘗試以5182鋁合金來執行預成形材折彎後的室溫引伸製程之試製與評估,材料的折彎預成形目的是為了使板材在尚未執行超塑性製程前便已縮短材料與成形模具的距離,並使之更容易完成超塑成形,其中若再加入引伸加工之製程目的也是用來縮減成形距離與成形時間,不同類型的折彎預成形形狀,使得材料在執行超塑成形時將有不同的流動方式,材料在高溫環境中的變形趨勢,將直接影響材料與模具模壁的接觸模式,為此本實驗藉先分析一般平板工件的成形趨勢、材料從平板的變形曲線變化趨勢至折彎預成形板材的曲線變形趨勢,由淺入深,以此要領來分析整流罩的超塑成性形研究,目的更在於完整流罩工件(亦稱“全尺寸工件”)的吹製。
Superplastic Forming (SPF) Processes usually uses plates to produce simple and symmetrical shapes, however, complicated and non-symmetrical shapes are seldom produced using SPF.
This thesis focuses on using SPF to manufacture the aluminum ”Fairing Cover” used on an actual commercial airliner. The pressure-time curves were calculated for commencing SPF process. The materials used for the research was 5083 aluminum alloys. The processed plate undergoes a pre-form bending process before SPF in order to shorten the distance between the material and the mold. In addition, 5182 aluminum alloys was used to evaluate the feasibility of room temperature drawing of the bent pre-form to further shorten the material’s distance to the mold and decrease SPF processing time.
Different pre-form shapes have different flow patterns and the pre-form shapes directly influence how the material contacts the mold during high temperature forming. This research analyzes the deforming trend from plate and from the bent pre-form, in hopes of completing the full size fairing cover component using SPF.
【1】R.M. Cleveland, A.K. Ghosh, J.R. Bradley,“Comparison of superplastic behavior in two 5083 aluminum alloys”, Materials Science and
Engineering, A351, pp.228-236, (2003)
【2】A.K. Ghosh ang C.H. Hamiton, Seminar Course, Taiwan Feb, 13-15, pp.25,
(1990)
【3】K. Higashi M. Mabuchi and T.G. Langdon, “High Strain Rate
Superplasticity in Metallic Materials and the Potential for Ceramic
Materials”, ISIJ International, pp.1423-1438, (1996)
【4】張書省,“超塑性鋁合金5083 快速成形研究”, 國立中央大學機械
工程研究所碩士論文, pp.5-26, (2000)
【5】J.W. Edington K.N. Melton and C.P. Cutler, Progress International
Materials Science, Vol. 21, No.2, pp.61-158, (1976)
【6】A.K. Ghosh, C.H. Hamiton and J.A.Wert, “Metals Form”, Vol.8, No4,
pp.172-190,(1985)
【7】SKY Aluminum C.LTD, “Superplastic 5083 alloy ALNOVI-1”, pp.1-9,
(1994)
【8】Y. Luo, S.G. Luckey, W.B. Copple, and P.A. Friedman, “Comparison of
Advanced SPF Die Technologiesin the Forming of a Production Panel”,
Journal of Materials Engineering and Performance, 17:142–152, (2008)
【9】A.K. Ghosh and C.H. Hamiton, “Superplastic Forming and Diffusion
Bonding”, SPF/DB workshop Taipei, pp.205-213, (1990)
【10】C.H. Hamiton, “NATO/AGARD Lecture Series”, No.168, Superplasticity,
Chap2, (1989)
【11】S. Kalpadjian, “Manufacturing Processes for Engineering Materials”,
Chap7, pp.444-446
【12】C.H. Hamilton, Vnited Stales Patent, Vol3, p.927& 817
【13】王善民, “Ti-6Al-4V 之超塑性成形製程模擬與分析”, 國立中央大學機
械工程研究所碩士論文, p.22, (2003)
【14】J. Liu, M.J. Tan, Y.A. Anders, E.W. Jarfors, K.S. Fong and S. Castagne,
“Superplastic-like forming of non-superplastic AA5083 combined with
mechanical pre-forming”, International Journal Advance Manufacture
Technology, 52, pp123–129, (2011)
【15】Y. Luo, S.G. Luckey, P.A. Friedman, Y. Penga, “Development of an
advanced superplastic forming process utilizing a mechanical
pre-forming operation”, International Journal of Machine Tools &
Manufacture, pp.1509–1518, (2008)
【16】G. Luckey, P. Friedman, K. Weinmann, “Design and experimental
validation of a two-stage superplastic forming die”, Journal of Materials
Processing Technology, pp.2152–2160, (2009)
【17】Gearge E. Dieter, “Mechanical Metallurge”, University of Mary-land,
Chap8, pp.299-300
【18】K.A. Padmanabhan and G.H. Davies, “Superplasticity Forming and
Diffusion Bonding ”, Rockwell International Thousand Oads California,
Seminar Course, pp.245-273, (1990)
【19】A.K. Ghosh and C.H. Hamilton, “Superplastic Forming of a Long
Rectangular Box Section-Analysis and Experiment ”, Rockwell
International Thousand Oads California, pp.245-273, (1979)
【20】C.H. Hamilton and N.E. Paton, “Superplasticity and Superplastic
Forming”, The Monerals, Metals & Materials Society, pp.297-302,
(1988)
【21】S.Kalpakjian, S.R. Schmid, “Manufacturing Engineering and
Technology”,Pearson Prentice Hall, p.446, (2006)
【22】林志倫,“超塑性5083鋁合金背壓狀態之快速率成形分析”, 國立
中央大學機械工程研究所碩士論文, p.15, (2000)
【23】MatWeb, MATERIAL PROPERTY DATA, http://www.matweb.com/
【24】H. Raman, G. Luckey, G. Kridli, and P. Friedman, “Development of
Accurate Constitutive Models for Simulation of Superplastic Forming”,
Journal of Materials Engineering and Performance, pp.284–292, (2007)
【25】L.D. Hefti, “Commercial Airplane Applications of Superplastically
Formed AA5083 Aluminum Sheet”, Journal of Materials Engineering
and Performance, pp.136–141, (2007)
【26】RS Components Ltd, http://china.rs-online.com/web/