| 研究生: |
董家威 Chia-Wei Tung |
|---|---|
| 論文名稱: |
雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究 The Optimization of Exposure Time based on Uniform Energy Ellipsoid for Two-photon Polymerization Micro-manufacturing |
| 指導教授: |
廖昭仰
Chao-Yaug Liao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 雙光子聚合技術 、雙光子吸收 、微製造 、最佳化 、高斯光束 、雷射曝光 |
| 外文關鍵詞: | Two-Photon Polymerization, Two-Photon absorb, mMcro-fabrication, Optimization, Gauss Beam, Laser Exposure |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙光子聚合(Two-photon Polymerization, TPP)微製造技術由於可製作任意微/奈米尺寸級之複雜立體外型結構,運用領域廣泛,因而成為熱門之研究。在目前相關研究中,提高TPP製程效率與良率、與目標物品精度,一直是各方專家相繼努力之方向。本論文利用高斯光束推導出不同能量之能量均勻橢圓體、統計學上目標函式,計算出最適合雷射曝光位置,使得欲加工之微結構體素重疊能量均一以達到雷射曝光最佳化,提高微結構之尺寸精度,並且降低聚合時發生微爆炸之機率。最後本文提出幾個微結構範例顯示此方法改良之最佳化。
Due to Two-Photon Polymerization(TPP) micro-fabrication technology, it can be made in any three-dimensional complex shape and structure of micro/nano scale ,which is used in a wide range of fields , TPP micro-fabrication has become a popular issue.
In the present studies , improving fabrication efficiency , micro-structure quality and enhancing object profile accuracy , all of these mentioned above has been already strive to do in every area of expert . This paper use Gauss Beam derivate many different uniform energy ellipsoid and built object function of statistics to calculate suitable laser exposure position . Not only micro structure voxel overlap ratio can become more uniform, which makes profile more accurate, but lower down the probability of micro-explosion when the structure in polymerization . At last , this paper will demonstrate some micro structure example before optimizing and after optimizing to prove this optimization feasibility.
參考文獻
[1] 潘恩亞、蒲念文、董玉平與游漢輝,「雙光子吸收光致聚合技術應用於微元件製作之研究」,中正嶺學報,34卷,1-16頁,2005。
[2] Goepper, M. M., ”Elementary processes with two quantum jumps”, Annalen der Physik, Vol. 9, No. 2, pp.273-294, 1931.
[3] Kaiser, W. and Garrett, C. G., ”Two-photon excitation in CaF2:Eu2+”,Physical Review Letters, Vol. 7, No.6, pp.229-231, 1961.
[4] Amato L., Gu Y., Bellini N., Shane M. E., Cerullo, G., and Osellame, R., “Integreted three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip”, The Royal Society of Chemistry , Vol.12, pp.1135-1142, 2012.
[5] Zhang, Y. L., Chen, Q. D., Xia, H., and Sun, H. B., “Designable 3D Nanofabrication by Femtosecond Laser Direct Writing”, Nano Todprocessay, Vol.5, pp.435-448, 2010.
[6] Byung, J. J., Hong, J. K., Cho, Y. H., Lee, K. S., Chung, H. P., Yang, D. Y., and Lee K. S., “Fabrication of Sharp-needled conical polymer tip on the corss-section of optical fiber via two-photon polymerization for tuning-fork-based atomic force microscopy”, Journal of optics Communications, Vol.286, pp.197-203, 2013.
[7] Maruo, S. and Inoue, H., ”Optically driven micropump produced by three-dimensional two-photon microfabrication”, Applied Physics Letter, 89, 144101.
[8] Takada, K., Sun, H. B., and Kawata, S., “Improved Spatial Resolution and Surface Roughness in Photopolymerization-Based Laser Nanowriting”, Applied Physics Letters,Vol.86, 071122, 2005.
[9] Obata, K., El-Tamer, A., Koch, L., Hinze, U., and Chichkov, B. N., “High-aspect 3D two-photon polymerization structuring with widened objective working range”, Science and Application,Vol.2,pp2047-7538, 2013.
[10] Park, S. H., Lee, S. H., Yang D. Y., Kong, H. J., and Lee, K. S., “Subregional Slicing Method to Increase Three-Dimensional Nanofabrication Efficiency in Two-Photon Polymerization”, Applied Physics Letters, Vol.87, 154180, 2005.
[11] Sun, H. B., and Kawata, s.,“Two-Photon Laser Precision Microfabrication and Its Applications to Micro-Nano Devices and System”, Journal of Lightwave Technology, Vol. 21,pp.624-633, 2003.
[12] Baldeck, P. L., Bouriau, M., Wang, I., Martineau, C., and Andraud, C.,“Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser”, OPTICS LETTERS, Vol. 27, pp.1348-1350, 2002.
[13] Wu, S., Serbin, J., and Gu, M.,“Two-Photon Polymerization for Three-Dimensional Micro-Fabrication”, Journal of Photochemistry and Photobiology A:Chemistry, Vol. 181, pp.1-11, 2006.
[14] Liao, C.-Y., Bouriauand, M., Baldeck, P.L., Léon, J.-C., Masclet, C., and Chung, T.-T., “Two-dimensional slicing method to speed up the fabrication of micro-objects based on two-photon polymerization”, Applied Physics Letter, Vol.91, pp.033108-033108-3, 2007.
[15] Park, S. H., Kim, K. H., Lim, W. L., Yang, D. Y., and Lee, K. S.,“Investigation of three-dimensional pattern collapse owing to surface tension using an imperfection finite element model”, Microelectronic Engineering, Vol. 85, pp.432-439, 2008.
[16] Maruo, S., Hasegawa, T., and Yoshimura, N., “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures”, Optics Express , Vol.17, No.23, 2009.
[17] Tanaka, T., Sun, H. B., and Kawata, S., “Rapid Sub-Diffraction-Limit Laser Micro/Nano processing in a Threshold Material System”, Applied Physics Letters,Vol. 80, No.2, pp.312-314, 2002.
[18] Lim, T. W., Park, S. H., and Yang, D. Y., “Countour Offset Algorithm for Precise Patterning in Two-Photon Polymerization”, Microelectronic Engineering, Vol. 77, pp.382-388, 2005.
[19] Lee, K. S., Kim, R. H., Yang, D. Y., and Park, S. H., “Advances in 3D nano/microfabrication using two-photon initiated polymerization”, polymer science,Vol. 33, pp.631-681, 2008.
[20] Malinauskas, M., Purlys, V., Zukauskas, A., Bickauskaite, G., Gertus, T., Danilevicius, P., Paipulas, D., Rutkauskas, M., Gilbergs, H., Baltriukiene, D., Bukelskis, L., Sirmenis, R., Bukelskiene, V., Gadonas, R., Sirvydis, V., and Piskarskas, A., “Laser Two-Photon Polymerization Micro-and Nanostructuring Over a Large Area on Various Substrates”, Proc of SPIE, Vol. 7715, 2010.
[21] Park, S. H., Yang, D. Y., Kim, R. H., and Lee, K. S., ”Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications”, Polymers for Advanced Technologies, Vol. 17, pp.72-82, 2006.
[22] http://www.newport.com/Gaussian-Beam-Optics/144899/1033/content.aspx
[23] Bártolo, P. J. (Editor), Stereolithography Materials, Processes and Applications, Springer, New York, 2011.
[24] Ovsianikov, A., Shizhou, X., Farsari, M., Vamvakaki, M., Fotakis, C., and Chichkov, B. N., ”Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials”, OPTICS EXPRESS, Vol. 17, No. 4, 2009.
[25] Sun, H. B., Kawata, S., Takada, Kenji., ”Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting”, Applied Physics Letters, Vol.86, pp.071122, 2005.
[26] Lin, C. T., Fan, H., Bouriau, M., Liao, C. Y., Lin, C. L., Masclet, C., Leon, J. C., Chung, T. T., Baldeck, P. L., ”Simulation and correction of angular defects in two-photon lithography”, Journal of Photopolymer Science and Technology, Vol.24 , pp.651-655, 2011.
[27] 林伯勳、胡光復、沈哲緯、辜炳寰與鄭錦桐,「最佳化方法於工程上之應用」,中興工程季刊,第103期,13-24頁,2009。
[28] 曾郁文,「雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究」,國立中央大學,碩士論文,民國103年。
[29] 林翰良,「雙光子聚合微製造技術之三維結構製造品質改進研究」,國立中央大學,碩士論文,民國102年。