| 研究生: |
王良峯 Liang-Feng Wang |
|---|---|
| 論文名稱: |
表面輪廓連續起伏之光柵 Fabrication of Grating with Continuous profile |
| 指導教授: |
楊宗勳
Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 微光柵 、微光學元件 、熔融光阻 |
| 外文關鍵詞: | Melting and Reflow, Micro-Optics, Micro-grating |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展以光阻熔融、粗糙化表面和結構翻模轉印的製程,製造表面輪廓連續起伏之光柵 (Fabrication of grating with continuous profile)。表面輪廓連續起伏之光柵的製作主要是將光阻旋轉塗布置粗糙化表面上,根據Wenzel和Cassie的理論,光阻依據結構作出最小能量的分佈,再利用加熱熔融使得光阻表面輪廓趨於連續球面分佈,最後再將製作好的光阻表面輪廓翻模轉印至矽膠 (Silicon Rubber)上。本研究建立出依據粗糙化表面的深寬比,與熔融後的光阻表面輪廓之曲率半徑的關係圖,作為日後製作不同參數之光柵的依據。在本研究中,量測表面輪廓連續起伏之光柵與二元式光柵的繞射效率,並且相互比較,實驗結果如理論預測一樣,表面輪廓連續起伏之光柵有較好的繞射分光效果。在此總結,本研究提出一種製造表面輪廓連續起伏之光柵的製程方法,其繞射分光效果比傳統的二元式光柵高。
This paper primarily concerns about making use of thermal, rough surface, structure printing to fabrication the grating with continuous profile. According to the theory of Wenzel and Cassie, we spin the photo-resist (PR) on rough surface. The PR will be offered the energy minimum depends on the geometric parameters of the surface. And the PR is heated above its glass transition temperature, the melting PR will change into a spherical profile for minimizing its surface energy. After reflow, we print the PR profile into silicon rubber.
Here, we establish the relationship between the aspect of the rough surface and the curvature of the PR. We compare the binary grating with the continuous profile grating. Moreover, the grating with continuous profile of diffraction efficiency is better than binary grating.
[1] M. C. WU, “Micromachining for Optical and Optoelectronic Systems”, IEEE, 85, NO.11, 1997.
[2] B. Morgan, J. Krizmanic, and R. Ghodssi. “Development of a deep silicon phase Fresnel lens Using gray-scale lithography and deep reactive ion etching”, Micromechanics and Microengineering, 13, 2004.
[3] Nussbaumyx, R Volkely, H. P. Herzigy,Design, M. Eisnerz and S. Haselbeckz, “Design, Fabrication and testing of microlens arrays for Sensors and Microsystems”, APPLIED OPTICS, 6, 617-636, 1997.
[4] M. E. Motamedi, “MOEMS”, SPIE, January 2005.
[5] D. C. O’Shea, T. J. Suleski, A. D. Kathman, D. W. Prather, “Diffractive Optics: Design Fabrication, and Test”, SPIE, June 2003.
[6] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays”, APPLIED OPTICS, 27, No.7, 1988.
[7] E.-B. kely, H.-J. Fuchs, A. Kilian, ”Fabrication of glass lenses by melting technology”, Proc. SPIE , 4440, 85-92, 2001.
[8] J. Schulze, W. Ehrfeld, H. Loewe, A. Michel, A. Picard, “Contactless embossing of microlenses: a new technology for manufacturing refractive microlenses”, SPIE, 3009, 89-98, 1997.
[9] M.-H. Wu and G. M Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography”, Micromechanics and Microengineering, 12, 747-758 , 2002.
[10] W.-X. Yu, X.-C. Yuan, N.-Q. Ngo, W.-X. Que, W.-C. Cheong and V. Koudriachov, “Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing”, OPTICS XPRESS, 10, 2002.
[11] K.-S. Chen, I.-K. Lin and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies”, Micromechanics and Microengineering, 15, 1894-1903, 2005.
[12] B. Morgan, J. Krizmanic, and R. Ghodssi “Development of a deep silicon phase Fresnel lens Using gray-scale lithography and deep reactive ion etching”, Micromechanics and Microengineering, 13, 2004.
[13] T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato, “Ultraviolet-cured polymer microlens arrays”, APPLIED OPTICS, 38 , 1999.
[14] S. Haselbeck, H.Schreiber, J. Schwider, N. Streibi, “Microlenses fabricated by melting a photoresist on a base layer”, SPIE, 32, 1322-1324, 1993.
[15] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, "Technique for monolithic fabrication of microlens arrays", APPLIED OPTICS. 27, 1281-1284, 1988.
[16] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist”, Meas. Sci. Technol. 1, 759-766, 1990.
[17] 韋乾佑, “以微電鑄法製造高填充率之微透鏡陣列模仁研究”, 國立台灣科技大學機械工程系碩士學位論文, 2005。
[18] H. Yang, C.-K. C., C.P. Lin and S.C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers." Micromechanics and Microengineering, 14, 277-282, 2004.
[19] M.G. Han, Y.J. Park, S.H. Kim, B.S. Yoo and H.H. Park, “Thermal and chemical stability of reflowed-photoresist microlenses”, Micromechanics and Microengineering, 14, 2004.
[20] Fowkes F M., “Contact angle, Wettability an adhesion”, Advances in Chemistry, Series 43 C. Washington. DC, 1-51, 1964.
[21] Kwok D. Y, Neumann A. W., “Contact angle measurement and contact angle interpretation” J, Advances in Colloid and Interface Science, 81, 167-249, 1999.
[22] Bartell F E, Shepard J W., “Surface roughness as related to hysteresis of contact angle”, Part I:The system-water-air” J., The Journal of Physical Chemistry, 57:211-215, 1953.
[23] Fowkes F M., “Contact angle, Wettability an adhesion”, Advances in Chemistry, Series 43 C. Washington. DC, 112-135, 1964.
[24] Eick J. D., Good R. J., Neumann A. W., “Thermodynamics of contact angles, Part II:rough solid surfaces” J., Journal of Colloid and Interface Science, 53, 235-248, 1975.
[25] Huh C., Mason S. G., “Effects of surface roughness on wetting” J., Journal of Colloid and Interface Science, 60,1 1-38, 1977.
[26] Good R J., “A thermodynamic derivation of Wenzel’s modification of Young’s equation for contact angles, together with a theory of hysteresis” J. Journal of American Chemical Society, 74, 5401-5402, 1952.
[27] Johnson R. E. Jr., Dettre R. H., “Contact angle hysteresis, Part III: Study of an idealized heterogeneous surfaces”, Journal of Physical Chemistry, 68, 1744-1749, 1964.
[28] Johnson R. E. Jr., Dettre R. H., “Contact angle hysteresis, Part IV: Contact angle measurments on heterogeneous surfaces” J., The Journal of Physical Chemistry, 69, 1507-1514, 1965.
[29] Schwartz L. W., Garoff S., “Contact angle hystresis on heterogeneous surface” J., Langrmuir, 1(2), 219-230, 1985.
[30] Marmur A., “Contact angle hysteresis on heterogeneous smooth surface” J. Journal of Colloid and Interface Science, 168, 40-46, 1994.
[31] Decker E. L., Garoff S., “Using vibration noise to probe energy barriers producing contact angle hysteresis” J., Langmuir, 12, 2100-2110, 1996.
[32] Decker E. L., Garoff S., “Using vibration noise to probe energy barriers producing contact angle hysteresis” J., Langmuir, 13, 6321-6332, 1997.
[33] Matijevic E., “Surface and Colloid Science” C., New York, Wiley-Interscience, 85-151, 1969.
[34] Timmons C. O., Zisman W. A., “The effect of liquid structure on contact angle hysteresis” J., Journal of Collid and Interface Science, 22, 165-171, 1966.
[35] Fadeev A. Y., McCarthy T. J., “Binary Monolayer mixtures:Modification of nanopores in silicon-supported tris(trimethylsiloxy) silyl monolayer” J., Langmuir, 15(21), 7238-7243, 1999.
[36] Chen W, McCarthy T. J. “Layer-Layer deposition: A tool for polymer surface modification” J., Macromolecules, 30(1), 78-86, 1997.
[37] Fadeev A. Y., McCarthy T. J., “Trialklsilane monolayers covalently attached to silicon surface: Wettability studies indicating that molecular topography contributes to contact angle hysteresis” J., Langmuir, 15 (11), 3759-3766., 1999.
[38] Youngblood J. P., McCarthy T. J., “Ultra-hydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radio frequency plasma” J., Macromolecules, 32(20), 6800-6806, 1999.
[39] Sedev R. V., Petrov J. G., Neumann A. W., “Effect of swelling of polymer surface on advancing and receding contact angles” J., Journal of Colloid and Interface Science, 180, 36-42, 1996.
[40] Sedev R, V., Budziak C, J, Petrov J, G, “Dynamic contact angles at low velocities” J, 1993.
[41] Lam C. N. C., Kim N., Hui D., “The effect of liquid properties to contact angle hysteresis” J., Colloids and Surfaces A, 189, 265-278, 2001.
[42] Lam C. N. C., Ko L. H. Y., Yu L. M. Y., “Dynamic cycling contact angle measurement: Study of advancing and receding contact angles” J., Journal of Colloid and Interface Science, 243, 208-218, 2001.
[43] Wenzel R. N., Ind. Eng. Chem., 28, 988, 1936.
[44] Cassie A. B. D. and Baxter S. T., Faraday Soc., 40, 546, 1944.
[45] J. Lee, B. He and N. A. Patankar, “A roughness-based wettability switching membrane device for hydrophobic surfaces”, Micromechanics and Microengineering, 15, 2005.
[46] D. L. MacFarlane, V. Narayan, J. A.. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays”, IEEE Photonics Technology Letter, 6, 1112-1114, 1994.
[47] 葉星輝, 生物晶片之螢光光學檢測, 國立中央大學光電科學研究所碩士論文, 2005。