| 研究生: |
賀康瑋 Kang-Wei Ho |
|---|---|
| 論文名稱: |
線上視訊於IP網路可變延遲環境下之訊務平順化研究 On-line Video Traffic Smoothing for IP Network with Variable Delay |
| 指導教授: |
張寶基
Pao-Chi Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 平順化 、線上即時視訊 、訊務預測 、網路延遲 |
| 外文關鍵詞: | traffic prediction, online video, smoothing, delay |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
訊務平順化 (Traffic smoothing)是視訊傳輸前,充分考量網路服務能力與使用者資源,有效減少視訊串流叢集性與頻寬浪費的重要技術之一。在視訊壓縮標準規範中,如MPEG視訊標準的Video Buffering Verifier (VBV)、或H.263視訊標準的Hypothetical reference decoder (HRD),對於所提供的串流順暢傳輸機制,是基於固定的傳輸率與已知的使用者緩衝區大小的假設下予以建議,如此受侷限的假設環境,難以適用於現今廣泛、複雜的網路環境與眾多視訊傳輸應用的需求。因此,一個能提供有效平整訊務、適應網路環境變化、兼顧使用者播放能力,甚至適用於即時性視訊傳輸的應用,如線上球賽轉播、線上監視系統…等之視訊傳輸服務技術,已成為迫切研究發展的議題。
在本篇論文中,針對線上視訊服務提出一套有效訊務平順化之整合方案,其中包含視訊訊務預測以及因應可變延遲網路之智慧型線上平順調整機制。有別於其他相關文獻,本論文突破線上訊務平順化技術的瓶頸,具有更低的傳輸率變動與保有低峰值頻寬需求的優點,更重要地,具有對抗網路延遲之能力。實驗結果顯示,傳輸率變動造成的協商次數大幅降低最多可達80%,改善之傳輸率規劃可有效地因應網路的延遲,使得畫面丟棄率大幅降低約20%以上,進而有效提升使用者播放的視訊品質。
The technique of on-line video traffic smoothing is a significant method to improve the network BW utilization and reduce the burstiness characteristic of live video data. An efficient traffic smoothing scheme should not only consider the characteristics of video coding, but also consider the QoS capacity of IP network and the limitation of server and client buffer space. Regarding the methods of delivering video data used by current video coding standards, a constant transmission rate and a fixed network delay are assumed whether the Hypothetical Reference Decoder (HRD) in H.263 or the video buffering verifier in MPEG is considered. These assumptions are quite rigid and unrealistic due to the variety of current network environments, especially for live on-line video applications.
Therefore, this paper proposes an Integrated On-line traffic Smoothing (IOS) system that consists of the Long-Span Prediction (LSP) scheme, the Smart Hopping (SH) approach, the Middle Tracking (MT) method, and the Dynamic Bound Adjustment with network Delay Tracking (DBA-DT) strategy. Compared with traditional schemes, the proposed IOS can provide more efficient smoothing performances with low variance of transmission rates and low peak rate requirement. More importantly, IOS provide the robust capability against the dynamic network delay. Simulation results reveal that IOS can effectively reduce the number of negotiations with network up to 80% and low the frame loss rate up to 20%.
[1] ISO/IEC JTC1/SC29/WG11, “MPEG-4 Video Verification Model version 18.0,” N3908, Jan. 2001.
[2] ISO/IEC JTC1/SC29/WG11, “Text of ISO/IEC 14496-2: 2001/COR2,” N5158, Oct. 2002.
[3] ISO/IEC JTC1/SC29/WG11, “MPEG-4 Visual: List of Problems Reported,” N5161, Oct. 2002.
[4] S. Sen, L. Rexford, J. K. Dey, J. F. Kurose, and D. F. Towsley, “On-line Smoothing of Variable-Bit-Rate Streaming Video,” IEEE Trans. Multimedia, vol. 2, no. 1, Mar. 2000.
[5] M. Grossglauser, S. Keshav, and D. Tse, “RCBR:A Simple and Efficient Service for Multiple Time-scale Traffic,” IEEE/ACM Trans. Networking, vol. 5, no. 6, pp. 741-755, Dec. 1997.
[6] D. Loguinov and H. Radha, “Effects of Channel Delays on Underflow Events of Compressed Video Over the Internet,” IEEE ICIP, Sep. 2002.
[7] A. M. Adas, “Using Adaptive Linear Prediction to Support Real-Time VBR Video Under RCBR Network Service Model,” IEEE/ACM Trans. Networking, vol. 6, no. 5, pp. 635-644, Oct. 1998.
[8] S. J. Yoo, “Efficient Traffic Prediction Scheme for Real-Time VBR MPEG Video Transmission Over High-Speed Networks,” IEEE Trans. Broadcasting, vol. 48, no. 1, pp. 10-18, Mar. 2002.
[9] Z. He, and S. K. Mitra, “Optimum Bit Allocation and Accurate Rate Control for Video Coding via ρ-Domain Source Modeling,” IEEE Trans. Circuits and Syst. Video Technol., vol. 12, no. 10, pp. 840-849, Oct. 2002.
[10] 楊儒堯, “即時性視訊訊務預測與平寬協商機制於具服務品質保證之網路,” 國立中央大學電機工程研究所碩士論文, 中華民國九十二年六月。
[11] J. Feng, and K. T. Lo, “A Simple Hierarchical Traffic Model for VBR MPEG Video,” Performance, Computing and Communications, IPCCC ''98., IEEE International, no. 16-18, pp.147 – 153, Feb. 1998.
[12] K. Chandra, and A. R. Reibman, “Modeling One- and Two-Layer Variable Bit Rate Video,” IEEE/ACM Trans. Networking, vol. 7, no. 3, June 1999.
[13] J. Zhang and J. Y. Hui, “Static and Dynamic Resource Allocation Algorithms for Real-Time VBR Video Transmissions in Multimedia Networks,” Information, Communications and Signal Processing, vol. 3, no. 9-12, pp. 1657 –1662, Sept. 1997.
[14] M. Wu, R. A. Joyce, H. S. Wong, L. Guan, and S. Y. Kung, “Dynamic Resource Allocation via Video Content and Short-Term Traffic Statistics,” IEEE Trans. Multimedia, vol. 3, no. 2, pp. 186-199, Jun. 2001.
[15] J. D. Salehi, Z. L. Zhang, J. Kurose, and D. Towsley “Supporting Stored Video: Reducing Rate Variability and End-to-end Resource Requirements Through Optimal Smoothing,” IEEE/ACM Trans. Networking, vol. 6, no. 4, pp. 397-410, Aug. 1998.
[16] J. Rexford, S. Sen, J. Dey, W. Feng, J. Kurose, J. Stankovic, and D. Towsley, “Online Smoothing of Live, Variable-Bit-Rate Video,” Proceedings of the IEEE 7th International Workshop on, pp. 235 - 243, 19-21 May 1997.
[17] S. Sen, J. L. Rexford, J. K. Dey, J. F. Kurose, and D. F. Towsley, “Online Smoothing of Variable-Bit-Rate Streaming Video,” IEEE Trans. Multimedia, vol. 2, no. 1, March 2000.
[18] R. I. Chang, “Dynamic Window-Based Traffic-Smoothing for Optimal Delivery of Online VBR Media Streams,” ICPADS Electronic Edition (IEEE Computer Society DL) pp. 127-134, 2000.
[19] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, MPEG Video Compression Standard, Chapman & Hall, 1997.
[20] R. Talluri, “Error-Resilient Video Coding in the ISO MPEG-4 Standard,” IEEE Commun. Mag., vol. 36, no. 6, pp. 112-119, Jul. 1998.
[21] “Annex C, video buffering verifier,” in Information Technology Generic Coding of Moving Pictures and Associated Audio Information: Video (MPEG-2/H.262), 2000, ISO/IEC 138 180-2.
[22] R. Braden, L.Zhang, Berson, S. Herzog, and S. Jamin, “Resource ReSerVation Protocol (RSVP),” RFC 2205, Sep. 1997.
[23] S.Shenker, C.Partidge, and R. Guerin, “Specification of Guaranteed Quality of Service,” RFC 2212, Sep. 1997.
[24] Y. Bernet, J. Binder, S. Blake, M. Carlson, S. Keshav, E. Davies, B. Ohlman, D. Verma, Z. Wang, and W. Weiss, “A Framework for Differentiated Services,” Internet Draft, draft-ietf-diffserv- framework 01.txt, Oct. 1998.
[25] S. Blake, D. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture for Differentiated Services,” RFC2475, Internet Engineering Task Force (IETF), Dec.1998.
[26] S. Wenger. (2001) Common Conditions for Wire-Line, Low Delay IP/UDP/RTP Packet Loss Resilient Testing. [Online]. Available: ftp://ftp.imtc-files.org/jvt-experts/0109_San/VCEG-N79r1.doc
[27] D. Gross and C. M. Harris “Fundamentals of Queueing Theory, ” second edition, 1985.
[28] R. T. Sheu and J. L. C. Wu, “Performance Analysis of Rate Control with Scaling QoS Parameters for Multimedia Transmissions,” IEE Proc.-Commun., vol. 150, no. 5, Oct. 2003.
[29] Q. Zhang, W. Zhu, and Ya-Qin Zhang “Resource Allocation for Multimedia Streaming Overthe Internet,” IEEE Trans. Multimedia, vol. 3, no. 3, Sep. 2001.
[30] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin “Resource ReSerVation Protocol (RSVP) --Version 1 Functional Specification” RFC2205 , Network Working Group, Sept. 1997.