| 研究生: |
唐文賢 Wen-Xian Tang |
|---|---|
| 論文名稱: |
高強度鋁合金擠型材之研究 |
| 指導教授: |
歐炳隆
Bin-Lung Ou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 高強度鋁合金 、擠製 、擠型材 、7046 、2024 |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗以擠製時造成的最大壓力值以及表面品質來評估其擠型性,藉由DSC熱差分析儀分析材料擠出後以及經過時效後基地內析出狀態,利用光學顯微鏡(OM)、穿透式電子顯微鏡(TEM)觀察合金內再結晶情形以及析出強化相分布情形,以掃描式電子顯微鏡(SEM)觀察材料拉伸、衝擊斷裂面。
2024鋁合金最佳的均質化條件為溫度520℃時間10小時,可將鑄造時產生的偏析以及共晶相消除。雖然擠製前預熱溫度越高,擠製後的固溶程度越大,但是對2024鋁合金而言,預熱溫度越高,則越容易造成表面龜裂的現象,因此預熱溫度不可過高。高含量Cu、Mg的2024合金具有相當的強度,但是其衝擊韌性卻是最低的,而低含量Cu、Mg合金的強度雖低,但是卻有較高的衝擊韌性。
7046鋁合金最佳的均質化條件為溫度470℃時間24小時。擠製後造成基地的固溶度隨均質化溫度、預熱溫度的提高而增加,可得到較高的硬度值;但就強度而言,均質化溫度及預熱溫度越高,卻造成再結晶組織粗大,反而使強度下降。Zn含量改變對7046合金而言,對機械性質似乎沒有太大的影響,而Mg含量的改變就有明顯影響:7046-LMg雖然強度最低,但衝擊韌性卻是最高的。
In this study, the extrudability was evaluated with the maximum extrusion pressure and the surface quality of the extruded products. The mechanical properties were investigated using tensile, impact and hardness tests. Differential scanning calorimetry (DSC) in conjunction with transmission electron microscopy (TEM) were used to characterize the matrix precipitates of the alloys. The microstructural and fractured characterization were examined by optical and scanning electron microscopy (SEM).
For the 2024 aluminum alloy, the homogenization treatment with 520℃ for 10h can effectively eliminate the segregation and eutectic phase of the cast alloy. The degree of the solute supersaturation was increased with the reheating temperatures, but too high reheating temperature would also cause a higher susceptibility to hot cracking during extrusion. The 2024 alloy with high Cu and Mg contents revealed a considerately tensile strength, but the lowest impact toughness; In contrast, the alloy with low Cu and Mg contents revealed lower strength but higher impact toughness. The existence of eutectic phase was found to significantly influence the toughness property but slightly on the tensile strength.
For the 7046 aluminum alloy, the optimum homogenization treatment examined was 470℃ for 24h. The degree of the solute supersaturation of the alloy after extrusion was increased with increasing the homogenization and reheating temperatures. The results indicated that the extrudability was increased with extrusion temperature. Higher hardness values would be obtained by increasing homogenization and reheating temperatures, however, the tensile strength was opposite to the hardness measurements. This strength decay was primarily due to the coarsening of the recrystallized structure. Moreover, the mechanical properties were significantly affected by the variation of the magnesium content, but slightly affected by the zinc content. The 7046 alloy with low Mg content exhibited the lowest strength but highest impact toughness.
[1] G. Lang, A. F. Castle et al.: ”Extrusion”, Scientific
and Technical Development, Deutshe Gesellshaft für
Metallkunde, 1982
[2] Chunming YAO, Klaus B. Mueller:Metal Flow and Temperatures
Developed During Direct Extrusion of AA2024, Proceedings of
the sixth international Aluminum Extrusion Technology
Seminar, pp.141∼146, 1996.
[3] Simon P. Ringer, Kazuhiro Hono, Toshio Sakura, Ian J.
Polmear: Cluster Hardening In An Aged Al-Cu-Mg Alloy,
Scripta Materialia, Vol. 36, No 5, pp.517∼521, 1997.
[4] H. C. Shin, J. R. Su, T. Y. Tseng:Effects of Solution Heat
Treatment Temperature on Microstructure and Mechanical
Properties of 2024 Aluminum Alloy, China Steel Technical
Report, No.11,pp.41∼47, 1997
[5] C. Badini, F. Marino, E.Verne:Calorimetric Study on
Precipitation Path in 2024 Alloy and its SiC composite,
Materials Science and Engineering, A191, pp. 185∼191, 1995.
[6] 日本輕金屬學會委員,”鋁合金之組織與性質”,日本輕金屬學會,
pp.202∼209, 1991.
[7] I. J. Polmear:Light Alloys-Metallurgy of the Light Metals,
2nd ed., Edward Arnold, London, England, pp.18∼143, 1989
[8] S. P. Ringer, I. J. Polmear, T. Sakurai:Effect of
additions of Si and Ag to ternary Al-Cu-Mg alloys in the
α+S phase field, Materials Science and Engineering,
A217/218, pp.273∼276, 1996.
[9] A. K. Mukhopadhyay, K. S. Prasad and C. R. Chakravorty:
Precipitation in an Al-Cu-Mg Alloy Containing Trace
Addition of In, Materials Science Forum Vols, 217-222,
pp.753∼758, 1996
[10]M. O. Speidel:Stress Corrosion Cracking of aluminum
alloys, Metallurgical and Materials Transactions A, vol.
6A, pp. 631~642, 1975
[11]W. Gruhl:Stress Corrosion Cracking of High Strength
Aluminum Alloys, Zeitscheift Fur Metallkunde, vol. 75, pp.
819∼826, 1984
[12]K. Asano and K. I. Hirano:Precipitation Process in an Al- Zn-Mg Alloy, Trans. JIM, vol. 9, pp.24∼34, 1968
[13]P. N. T. Unwin, R. B. Nicholson:The Nucleation and Initial
Stages of Growth of Grain Boundary Precipitates in Al-Zn-Mg
and Al-Mg Alloys, Acta Metallurgica, vol. 17, pp. 1379∼
1393, 1969
[14]J.J. Thompson, E. S. Tankins and V. S. Agarwala:A Heat
Treatment for Reducing Corrosion and Stress Corrosion
Cracking susceptibilities in 7XXX Aluminum Alloys,
Materials Performance, pp.45∼52, 1987
[15]T.H. Sanders, Jr. and E. A. Starke, Jr:Relationship of
Microstructure to Monotonic and Cyclic straining of two Age
Hardening Aluminum Alloys, Metallurgical and Materials
Transactions A, vol. 7A, pp. 1407∼1418, 1976.
[16]L. Christodoulou and H. M. Flower:Hydrogen Embrittlement
and Trapping in Al-6%Zn-3%Mg, Acta Metall., vol. 28, pp. 481
∼487, 1980.
[17]G. W. Lorimer and R. B. Nicholson:Further Results on the
Nucleation of Precipitates in the Al-Zn-Mg system, Acta
Metallurgica, vol. 14, pp. 1009∼1013, 1966
[18]M. Conserva, E. D. Russo and O. Caloni:Comparison of the
Influence of Chrominum and Zirconium on the Quench
Sensitivity of Al-Zn-Mg-Cu Alloys, Metallurgical
Transactions, Vol. 12, April, pp.1227∼1232, 1971.
[19]A.J. Cornish and M.K.B. Day:The Effect of Variable
Quenching Conditions on the Relationship between the Stress-
Corrosion-Resistance, Tensile Properties, and
Microstructure of a High-Purity Al-Zn-Mg Alloy, J. Inst.
Metals, vol. 99, pp.377∼384, 1971.
[20]日本輕金屬學會委員,”鋁合金之組織與性質”,日本輕金屬學會,
pp.289, 1991.
[21]J.Langerweger:Aluminum Technology, pp.216∼222, 1980.
[22]Oddvin Reiso:The Effect of Composition and Homogenization
Treatment on Extrudability of AlMgSi Alloys, Proceedings of
Third International Aluminum Extrusion Technology Seminar,
Atlanta, pp.31∼45, 1984.
[23]R. E. Reed-Hill and R. Abbaschian:Physical Metallurgy
Principles, 3rd ed., Boston, PWS Publishing Company, pp.515-
535, 1991.
[24]C.E. Deiter:Mechanical Metallurgy, 3rd ed., McGraw-Hill,
pp.65∼158, 1986.
[25]劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚:工程材料科學,全華科
技圖書出版,台北,台灣,pp.433∼486,民國82年7月。
[26]A.K. Vasudevan and R. D. Doherty:Aluminum Alloys -
Contemporary Research and Applications, Academic Press,
Inc., San Diego, pp.35∼170, 1989.
[27]T. Sheppard:Temperature and speed effect in hot extrusion
of aluminumalloys, Metal Technology, pp.130∼140, April
1981.
[28]Wolf-Dieter Finkelnburg, Gunther Scharf:Some Investigation
on the Metal Flow during Extrusion of Al Alloys,
Proceedings of Fifth International Aluminum Extrusion
Technology Seminar vol1, Chicago, pp.475∼484, 1992.
[29]Wojciech Libura:The Strain Gradient on Microstructure and
Properties of Extruded Aluminum Extrusion Alloys,
Proceedings of Fifth International Aluminum Extrusion
Technology Seminar vol1, Chicago, pp.485∼494, 1992.
[30]X.J. JIANG, B.NOBLE, B.HOLME, G.WATERLOO, and J.TAFTO:
Differential Scanning Calorimetry and Electron Diffraction
Investigation on Low-Temperature Aging in Al-Zn-Mg Alloys,
Metallurgical And Materials Transactions A Volume 31A,
pp.339~348, February 2000
[31]William D. Callister, Jr.:Materials Science and
Engineering, 3rd Edition, John Wiley&Sons inc, New York,
pp.99, 1993.