| 研究生: |
黃奕鈞 Yi-Jun Huang |
|---|---|
| 論文名稱: |
缺陷對紋理化鋸齒型石墨烯奈米帶熱電特性的影響 |
| 指導教授: |
郭明庭
Ming-Ting Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 缺陷 、紋理化鋸齒型石墨烯奈米帶 、熱電特性 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱電材料近年來是極熱門的研究方向,半導體熱電元件具有尺寸小、結構單純及可靠性高等優點,近年來是綠色能源的重要選項。而石墨烯奈米帶(Graphene Nanoribbons)則為一種很有潛力的熱電材料,近來,有文獻出現將鋸齒型石墨烯奈米帶(Zigzag Graphene Nanoribbons)有週期性的把上下兩端鋸齒邊緣的原子移除掉進而變成紋理化鋸齒型石墨烯奈米帶(textured ZGNRs)之方法,此種作法促使量子侷限效應的發生進而出現類似位障的效果,使金屬特性轉變為半導體特性。同時在製程中,材料可能出現缺陷(defect),這種缺陷會因出現的位置不同對紋理化鋸齒型石墨烯奈米帶的熱電特性產生不同的影響,例如我們發現紋理化鋸齒型石墨烯奈米帶對於缺陷出現在結構內部造成的影響較不敏感。本文章將會著重在缺陷對紋理化鋸齒型石墨烯奈米帶的熱電特性的討論。
The semiconductor thermoelectric devices have the advantage of small size, simple structure, and high reliability, it is one of the most important green energies. Graphene nanoribbon is a very promising thermoelectric material. A method for turning zigzag graphene nanoribbons into textured zigzag graphene nanoribbons by periodically removing atoms from the zigzag edges at the top and bottom has been proposed. The indented edges induce cause quantum confinement effects, resulting in a barrier-like effect that transforms the metal characteristics into semiconductor characteristics. During the fabrication process, defects may occur in the material, and the effects of these defects on the thermoelectric properties of the textured zigzag graphene nanoribbons may vary depending on their location. We found that the textured zigzag graphene nanoribbons are less sensitive to defects in the interior sites.
[1] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).
[2] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis. Cubic AgPb(m)SbTe(2+m): Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).
[3] M. Y. Han, B. Ozyilmaz, Y. B. Zhang and P. Kim. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
[4] L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006).
[5] David M. T. Kuo and Y. C. Chang. Contact effects on thermoelectric properties of textured graphene nanoribbons. Nanomaterials 12, 3357 (2022).
[6] T. C. Harman and J. M. Honig. Thermoelectric and thermomagnetic effects and applications. (McGraw-Hill, New York, 1967).
[7] A. F. Ioffe. Semiconductor thermoelements and thermoelectric cooling. (Infosearch Limited, London, 1957).
[8] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater. 6, 183 (2007).
[9] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
[10] J. M. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. L. Feng, K. Mullen and R. Fasel. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470 (2010).
[11] T. C. Li and S. P. Lu. Quantum conductance of graphene nanoribbons with edge defects. Phys. Rev. B 77, 085408 (2008).
[12] K. Wakabayashi, M. Fujita, H. Ajiki and M. Sigrist. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271 (1999).
[13] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. (Springer, Heidelberg, 1996).
[14] David M. T. Kuo. Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays. AIP Advances 10, 045222 (2020).
[15] H. Sevincli and G. Cuniberti. Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010).