| 研究生: |
賴怡伶 Yi-ling Lai |
|---|---|
| 論文名稱: |
含纖維素之生物吸附劑對重金屬吸附之研究 Adsorption of Heavy Metal by Biosorbents Containing Cellulose |
| 指導教授: |
李俊福
Jiunn-fwu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 纖維素 、重金屬 、吸附 、表面改質 |
| 外文關鍵詞: | cellulose, biosorbent, surface chemical modification, adsorption |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上已有許多物化學方法來移除溶液中之重金屬,然而工業廢水的多樣性,要得到較佳金屬離子去除效率是非常困難且成本很高。目前已有許多研究致力於發展低成本、可再利用之生物吸附劑來移除溶液中有害物質。果皮中含有纖維素、半纖維素、果膠等物質,纖維素中含有大量氫氧基,金屬離子可鍵結在這些官能基上達到移除重金屬離子之目的。
本研究主要為利用果皮上之纖維素如:橘子皮、香蕉皮及檸檬皮等,利用純化纖維素、果皮表面之酸鹼改質與固定化技術,製備多種含纖維素生物吸附劑,希望藉由生物吸附劑來吸附溶液Cu2+、Pb2+、Zn2+、Ni2+、Cd2+五種金屬。
實驗結果得知果皮經純化以及酸鹼改質後,吸附量有大幅提升趨勢。Carboxyl group含量愈多,對重金屬吸附愈好,顯示Carboxyl group多寡會影響吸附量。由FTIR圖譜可看出羧基與氫氧基之吸收波峰都很大,在進行吸附後,羧基與氫氧基之吸收波峰明顯削減,顯示果皮之纖維素可提供羧基與氫氧基,重金屬可鍵結在官能基所提供之未共用電子對上,達到移除重金屬目的。利用固定化技術所製備出顆粒狀吸附劑,吸附量並未明顯提升,顯示金屬只鍵結在褐藻膠之官能基上。
實驗結果顯示pH =5~6時,吸附效果最好。而果皮表面pHpzc值,也會影響吸附量之一。含纖維素吸附劑對Cu2+與Ni2+吸附效果很好,由於Cu2+與Ni2+可與大多數有機官能基所提供之未共用電子對進行鍵結,顯示對有機物具有很強親和性; Zn2+較易與含S、N、P有機物提供之未共用電子對鍵結,本研究製備之含纖維素吸附劑上主要提供氫氧基與羧基導致對Zn2+吸附量不佳。
Abstract
Traditionally, there are a lot of chemical and physical methods to remove heavy metal ions from industrial sewage. Due to the variety of industrial effluent, it is very difficult to get good removal efficiency with non-expensive. Presently, many studies devote to develop low cost and reusable biosorbent to get rid of harmful substance in the solution. Fruit peel principally consists of cellulose, hemi-cellulose, pectin substances and other low moleculear weight compounds. As the active binding sites for metals are supposed to be functional groups of hydroxyl and carboxyl in cellulose. Chemical modification has shown great promise in improving the cation exchange capacity due to the increase of functional groups.
This study use orange peel, banana peel and lemon peel as the raw materials to carry out some batch experiments. The experiments include extract cellulose from peels, effects of different chemical modification on peel surface and immobilized cellulose by using Ca-alginate to produce many kinds of biosorbents. The preparation of the biosorbents and its biosorption behaveiors of Cu2+, Pb2+, Zn2+, Ni2+ and Cd2+ were studied.
After peel surface chemical modification and extract cellulose from peels, the adsorption capacities of five heavy metal ions have increased compared to raw peels. The higher of carboxyl group content, the better adsorption capacities it is. It shows that the carboxyl group content will influence the adsorption capacity. The FTIR spectra showed that there are carboxyl groups and hydroxyl groups in biosorbents, which are able to react with heavy metal ions obviously in aqueous solution. It shows that cellulose provides carboxyl groups and hydroxyl groups, which have unshared pairs of electrons, and which can form coordinate linkages with metal ions. The adsorption capacities didn’t increase obviously by using immobilized biosorbents. It shows that heavy metal ions only coordinate with the function groups on Ca-alginate. The heavy metal ions adsorption are strictly pH dependent, and maximum uptake of heavy metal ions on different biosorbents are observed at pH range of 5.0-6.0. The pHpzc value of peel surface also influence the adsorption capacity. The Cu2+ and Ni2+ ions can coordinate with all active groups, so the biosorbents with cellulose have good adsorption capacity to Cu2+ and Ni2+. The Zn2+ coordinate preferentially with ligands containing N, P, and S donor atoms result in the biosorbent with cellulose don’t have good affinity with Zn2+.
Keywords: adsorption, cellulose, biosorbent, surface chemical modification
1. Abdelrahim, K.A.; Ramaswamy, H.S., 1995. High temperature/pressure rheology of carboxymethyl cellulose(CMC). Food Research International 28, 285-290
2. Ahrland, S.; Chatt, j.; Davies, N. R., 1958. Chem. Soc. Review 12, 265
3. Ajmal, M.; Rao, R.A.K.; Ahmad, R.; Ahmad, J., 2000. Adsorption studies on Citrus reticulate (fruit peel of orange): removal and recovery of Ni from electroplateing wastewater. Journal of Hazardous Material 79, 117-131
4. Aksu, Z.; İşoğlu, İ. A., 2005. Removal of copper(Ⅱ) ions from aqueous soluteion by biosorption onto agricultural waste sugar beet pulp. Process Biochemistry 40, 3031-3044
5. Annadurai, G.; Juang, R.S.; Lee, D.J., 2002. Adsorption of heavy metals from water using banana and orange peels. World Journal Microbiology and Biotechnology 47, 185-190
6. Arıca M. Y.; Arpa Ç.; Ergene A.; Bayramog˘lu G.; Genç Ö., 2003. Ca-alginate as a support for Pb(Ⅱ)and Zn(Ⅱ)biosorption with immobilized Phanerochaete chrysosporium. Carbohydrate Polymers 52, 167-174
7. Boehm, H. P., 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759-769
8. Charpentier, D.; Mocanu, G.; Carpov, A.; Chapelle, S.; Merle, L.; Muller, G., 1997. New hydrophobically modified carboxymethyl cellulose derivatives. Carbohydrate Polymer 33, 177-186
9. Davis, T.A.; Volesky, B.; Mucci, A., 2003. A review of the biochemistry of heavy metal biosorption by browm algae. Water Res. 37, 4311-4330
10. Denizil, A.; Say, R.; Testereci, H.N.; Arica, M.Y., 1999. Procein blue MX-3G-attached-poly(HEMA) membrane for cupper, arsenic, cadmium and mercury adsorption. Sep. Sci Technol. 34, 2369-2381
11. Frurest, E.; Volesky, B., 1997. Alginate properties and heavy metal biosorption by marine algae. Appl. Biochem. Biotechnol 67, 215-226
12. Gaballah, I.; Goy, D.; Allain, E.; Kilbertus, G.; Thauront, J., 1997. Recovery of copper through decontaminateon of synthetic solutions using modified barks. Met. Metall. Trans. B28, 13-23
13. Grau, J.M.; Bisang, J.M., 1995. Removal and recovery of mercury from chloride solutions by contact deposition on iron felt. J. chem. Technol. Biotechnol. 62, 153-158
14. Hafez, N.; Abdel-Razek, A.S.; Hafez, M.B., 1997. Accumulation of some heavy metals on Aspergillus flavus. J. Chem. Technol. Biotechnol. 68, 19-22
15. Ho, Y.-S., 2003. Removal of copper ions from aqueous solution by tree fern. Water Res. 37, 2323-2330
16. Irving H. M. N. H.; Williams R. J. P., 1948. Nature 162, 746
17. Jianlong, W.; Horan, N.; Stentiford, E.; Yi, Q., 2000. The radial distribution and bioactivity of Pseudomonas sp immobilized in calcium alginate gel beads. Process Biochemistry 35, 465-469
18. Kaçar, Y.; Arpa, Ç.; Tan, S.; Denizli, A.; Genç, Ö.; Arıca, M.Y., 2002. Biosorption of Hg(Ⅱ)and Cd(Ⅱ)from aqueous solututions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Process Biochemistry 37, 601-610
19. Kapoor, A.; Viraraghavan, T., 1997. Heavy metal biosorption sites in Aspergillus niger. Biores. Technol. 24, 433-439
20. Kratochvil, D.; Volesky, B., 1998. Advances in the biosorption of heavy metals. TIBTECH 16, 291-300
21. Krishnani, K. K.; Meng X.; Christodoulate, C.; Boddu, V. M., 2007. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials.
22. Kumar, U.; Bandyopadhyay, M., 2006. Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour. Technol. 97, 104-109
23. Laszlo, J. A.; Dintzis F. R., 1994. Multicomponent biosorption in fixed beds. Water Research 34, 3186-3196
24. Leyva-Ramos, R.; Bernal-Jacome, L.A.; Acosta-Rodrigues, I.; 2005. Adsorption of cadmium(Ⅱ) from aqueous solution on natural and oxidized corncob. Sep. Purif. Technol. 45, 41-49
25. Leusch, A.; Holan, Z. R.; Volesky, B., 1995. Biosorption of heavy metals (Cd, Cu, Ni, Pb, and Zn) by chemically-reinforced biomass of marine algae. Journal of Chemical and Biotechnology 62, 279-288
26. Li, X.; Tang, Y.; Xuan, Z.; Liu, Y.; Luo, F., 2007. Study on the preparation of orange cellulose adsorbent and biosorption of Cd2+ from aqueous solution. Separation and Purfication Technology 55, 69-75
27. Lo, W.; Chua, H.; Lam, K.H.; Bi, S.P., 2002. A compareative investingation on the biosorption of lead by filamentous fungal biomass. Chemosphere 47, 1081-1085
28. Marshall, W. E.; Johns, M. M., 1996. Agricultural by-products as metal adsorbents: sorption properties and resistance to mechanical abrasion. J. Chem. Technol. Biotechnol. 66, 192-168
29. Marshall, W. E.; Wartelle, L. H.; Boler, D. E.; Toles, C. A., 2000. Metal ion adsorption by soybean hulls modified with citric acid: a comparative study. Carbon 9, 1407-1414
30. Nakajima, A.; Salaguchi, T., 1990. Recovery and removal of uranium by using plant wastes. Biomass 21, 55-63
31. Piyush, K. P.; Yashu, V.; Shweta, C.; Madhurima, P.; K.C., 2007. Biosorptive removal of cadmium from contaminated groundwater and Industrial effluents. Bioresource Technology.
32. Puranik, P. R., Paknikar, 1999. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnol. Prog. 15, 228-237
33. Rahnan, I. A.; Ismail, J.; 1993. Preparation and characterization of spherical gel from a low-cost material. J. Mater. Chem. 3, 931-934
34. Reed, B. E., 1998. Wastewater treatment. In: Heavy Metals. In Meyers, R.A. (Ed.), Encyclopedia of Environmental Analysis and Remediation 4, 5220-5248
35. Reddad, Z.; Gérente, C.; Andrès, Y.; Ralet, M. C.; Thibault, J. F.; Cloirec, P. L., 2002. Ni(Ⅱ) and Cu(Ⅱ) binding properties of native and modified sugar beet pulp. Carbohydrate Polymers 49, 23-31
36. Rombouts, F. M., Thibault, J. –F., 1986. Feruloylated pectic substances from sugar beet pulp. Carbohydrate Research 154, 177
37. Ruthven, D. M., 1984. Principles of Adsorption and Adsorption Process.
38. Saygideger, S.; Gulnaz, O.; Istifli, E.S.; Yuxel, N., 2005. Adsorption of Cd(Ⅱ), Cu(Ⅱ) and Ni(Ⅱ) ions by Lemna minor L effect of physicochemical environment, J. Hazard. Mater. 126, 96-104
39. Saeed, A.; Akhter, M. W.; Iqbal, M., 2005. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology 45, 25-31
40. Saglam, A.; Yalçinkaya, Y.; Denizli, A.; Arica, M.Y.; Genç, ö.; Bektas S., 2002. Biosorption of mercury by carboxymethylcellulose and immobilized Phanerochaete chrysosporium. Microchemical Journal 71, 73-81
41. Saglam, N.; Say, R.; Denizli, A.; Patir, S.; Arica, M.Y., 1999. Biosorption of inorganic mercury and alkylmercury species on P. chrysosporium mycelium. Process. Biochem. 34, 725-730
42. Say, R.; Denizli, A.; Arıca, M. Y., 2001. Biosorption of cadmium(Ⅱ), lead(Ⅱ)and copper(Ⅱ)with the filamentous fungus Phanerochaete chrysosporium. Bioresource Technology 76, 67-70
43. Tarley, C. R. T.; Ferreira, S. L. C.; Arruds, M. A. Z., 2004. Use of modified rice husks as a natural solid adsorbent of trace metals: characterization and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchem. J. 77, 163-175
44. Vijayaraghavan, K.; Jegan, J.; Palanivelu, K.; Velan, M., 2004. Removal of mickel(Ⅱ) ions from aqueous soluteon using crab shell particles in a packed bed up-flow column. J. Hazard. Mater. B113, 223-230
45. Vijayaraghavan, K.; Palanivelu, K.; Velan, M., 2006. Biosorption of copper(Ⅱ) and cobalt(Ⅱ) from aqueous solution by crab shell particles. Bioresource Technology 97, 1411-1419
46. Volesky, B.; Holan, Z. R., 1995. Biosorption of heavy metals Biotechnol.Prog. 11, 235-250
47. Volesky, B., 1990. Biosorption of Heavy Metals. CRC Press, Boca Raton.
48. Wartelle, L. H.; Marshall, W. E., 2000. Citric acid modified agricultural by-products as copper ion adsorbents. Advances in Environmental Research 4, 1-7
49. Wang, X.-s.; Qin, Y., 2005. Equilibrium sorption isotherms for of Cu2+ on rice bran. Process Biochemistry 40, 677-680
50. Xiaomin, L.; Yanru, T.; Zhexian, X.; Yinghui, L.; Fang, L., 2007. Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution. Separation and Purification Technology 55, 69-75
51. Zhou, J.L.; Kiff, R.J., 1991. The uptake of copper from aqueous soluteuon by immobilized fungal biomass. J. Chem. Technol. Biotechnol. 52, 317-330
52. 歐陽嶠暉,2004,下水道工程學,長松文化興業股份有限公司
53. 賴姻足,2004,以固定化綠膿桿菌球移除溶液中之重金屬,國立雲林科技大學化學工程系碩士論文