跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾威修
wei-xiu Zeng
論文名稱: 鹼質在卜作嵐水泥漿中的行為研究
Alkaline behavioral studies in portland-pozzloan slurry
指導教授: 李釗
Chau Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 131
中文關鍵詞: ASR鋰化合物飛灰爐石粉卜作嵐反應
外文關鍵詞: lithium compounds, ASR, slag, pozzloan reaction, fly ash
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中探討兩項主題: (1) 卜作嵐材料對水泥漿試體內可溶性鹼含量影響及(2) 鋰化合物對卜作嵐水泥漿試體內的可溶性鹼含量影響,探討游離態鹼質於卜作嵐水泥漿試體內的變化行為,與添加鋰化合物於卜作嵐水泥漿中對游離態鹼質的影響。
    結果顯示以爐石粉、飛灰取代部分水泥後,漿體有結合鹼質之行為,但當水泥的含鹼量較低時,飛灰及爐石粉釋出鹼質會增加試體內游離態鹼質的比例。由本研究的結果顯示,爐石粉、飛灰可以抑制混凝土ASR問題的機理,並非是導因於過去所認知的添加爐石粉或飛灰可以降低混凝土內的水溶性鹼的因素。
    鋰化合物添加於爐石粉或飛灰水泥時,游離態鹼質的數量皆會隨著添加的Li/(Na+K)莫耳比增加而降低,Li+含量比例會隨著取代水泥量的增加而增加,顯示同時添加Li化合物及卜作嵐材料時,會產生更佳抑制ASR的效果。


    Two themes was explored in this study: (1) The effect of pozzolan material for water soluble alkali in slurry and (2) The effect of lithium compounds for water soluble alkali in portland-pozzolan slurry. To explore the changes behavior for free state alkali in portland-pozzolan slurry, and the effect for free state alkali of adding lithium compounds in
    portland-pozzolan slurry.
    The result showed that after slag and fly ash replaced part of cement, the slurry has a combining behavior, however, the use of low alkali cement. Fly ash and slag will increase the alkaline to release in the proportion of free-state alkali. The result shows that mechanism can inhibit problems of ASR by using slag and fly ash concrete, not cause the perception elements in the past that adds slag and fly ash can reduce the water-soluble alkali within the concrete.
    When lithium compounds added to slag-cement or fly ash-cement, the number of free-state alkali will reduce as Li / (Na + K) molar ratio increased. Li + concentration ratio will increase with the replaced of the amount of cement. Display while adding Li compounds and pozzloan materials, will produce a better effect inhibition of ASR.

    目錄 第一章 緒論 1 1-1 研究源起 1 1-2 研究目的及方法 2 第二章 文獻回顧 4 2-1 飛灰 (Fly ash) 4 2-1-1 飛灰概述 4 2-1-2 飛灰之卜作嵐反應 4 2-2 爐石 (Slag) 5 2-2-1 爐石概述 5 2-2-2 爐石之卜作嵐反應 6 2-3 水泥 7 2-3-1 水泥概述 7 2-3-2 水泥之水化反應[1, 16] 8 2-4 鹼質與粒料反應[17] 9 2-4-1 鹼-氧化矽反應( ASR ) 10 2-4-2 鹼-矽酸鹽反應 10 2-4-3 鹼-碳酸鹽反應 (ACR) 10 2-5 卜作嵐材料取代水泥對水泥基材性質之影響 11 2-5-1卜作嵐材料取代水泥對孔隙溶液中鹼質之影響 12 2-5-2卜作嵐材料取代水泥對強度之影響 14 2-5-3卜作嵐材料取代水泥對孔隙之影響 14 2-6 卜作嵐材料含鹼量對ASR之影響 17 2-7 水泥含鹼量對ASR之影響 18 2-8 卜作嵐材料取代水泥量對抑制ASR之影響 19 2-9 鋰化合物抑制ASR之機理 19 2-10鋰化合物的種類與Li/Na莫耳比對抑制ASR之影響 21 2-11 新拌混凝土預防ASR之方法 22 第三章 試驗規劃 23 3-1 試驗材料 23 3-1-1 水泥 23 3-1-2 卜作嵐材料 24 3-1-3 拌合水 25 3-1-4 藥劑 25 3-2 調整水泥漿含鹼當量與Li/Na莫耳比方法 26 3-3 試驗規劃 27 3-4 試驗方法及設備 33 3-4-1 卜作嵐材料的處理 33 3-4-2 水泥漿試體內游離態陽離子含量分析相關試驗 33 3-4-3 水溶性陽離子檢測方式 37 3-5 試驗參數與符號說明 39 3-5-1 子流程A「卜作嵐材料對降低水泥漿試體內可溶性鹼質影響」試驗符號說明 39 3-5-2 子流程B「鋰化合物對添加於卜作嵐水泥材料的水泥漿試體內的可溶性鹼質影響」試驗符號說明 40 3-6 水泥漿試體內水溶性鹼質含量計算方法 42 第四章 試驗結果與討論 44 4-1卜作嵐材料對水泥漿試體內可溶性鹼含量影響 46 4-1-1 爐石粉的影響 46 4-1-1-1 未額外添加鹼質 46 4-1-1-2 以NaOH額外添加鹼質 48 4-1-1-3 以KOH額外添加鹼質 55 4-1-2 飛灰的影響 60 4-1-2-1 未額外添加鹼質 60 4-1-2-2 以NaOH額外添加鹼質 62 4-1-2-3 以KOH額外添加鹼質 67 4-2鋰化合物對卜作嵐水泥漿試體內的可溶性鹼含量影響 71 4-2-1 爐石粉水泥漿試體 71 4-2-1-1 LiOH.H2O的影響 71 4-2-1-2 LiNO3的影響 85 4-2-2 飛灰水泥漿試體 97 4-2-2-1 LiOH.H2O的影響 97 4-2-2-2 LiNO3的影響 108 4-3 綜合討論 120 第五章 結論與建議 123 5-1 結論 123 5-2 建議 126 參考文獻 127

    [1]Young J.F., “Concrete,” second edition, 2003.
    [2]ACI Committee 266, “Use of fly ash in concrete,” ACI Materials Journal, Vol.84,No.5, pp.158-167, 1987.
    [3]行政院公共工程委員會,「公共工程飛灰混凝土使用手冊」,民國88年。
    [4]Bhatty M.S.Y., and Greening N.R., “Some long time studies of blended cements with emphasis on alkali-aggregate reaction,” Proceedings of the 7th International Conference on Alkali-Aggregate Reaction in Concrete, pp. 85-92, 1986.
    [5]ASTM C618, “Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete,” ASTM Designation.
    [6]黃邦乞,「波蜀蘭物質中鹼金屬的行為研究」,碩士論文,國立中央大學土木工程研究所,民國78年。
    [7]Shayan A., Diggins R., and Ivanusec I., “Effectiveness of fly ash in preventing deleterious expansion due to alkali-aggregate reaction in normal and steam-cured concrete,” Cement and Concrete Research Vol.26, pp.153-164, 1996.
    [8]Hanehara S., Tomosawa F., Kobayakawa M., and Hwang K., “Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste,” Cement and Concrete Research Vol.31, pp.31-39, 2001.
    [9]Richardson I.G., Brough A.R., and Brydson R., “Substituted calcium silicate hydrate(C-S-H) gels as determined by Si and Al,” Journal Title Journal of the American Ceramic Society, pp.2285-2288, 1993.
    [10]Fengyan Wei, and Zhongzi Xu, “Mechanism of fly ash on ASR”, Journal of Materials Science and Engineering Vol.23, No.5, 2005.
    [11]Mehta P.K., “Pozzolanic and cementitions by products as mineral admixtures for concrete-a critical review,” ACI SP79, pp.1-46, 1983.
    [12]ACI Committee 266, “Ground granulated blast-furnace slag as a cementitious constituent in concrete,” ACI Materials Journal, Vol.84 No.4, pp.327-342, 1987.
    [13]行政院公共工程委員會,「公共工程高爐石混凝土使用手冊」,民國90年。
    [14]Roy D.M., and Idon G.M., “Hydration structure and properties of blast fueance slag cements mortars and concrete,” ACI Journal, Vol. 79, pp.444-457, 1982.
    [15]Bryan K. Marsh, and Robert L.Day, “Pozzolanic and cementitious reactions of fly ash in blended cement pastes,” Cement and Concrete Research, Vol.18, pp.301-310, 1988.
    [16]Kelsea Schwing, “Use of fly ash in the mitigation of alkali-silica reaction in concrete,” 2010.
    [17]雷蕾,「爐渣抑制ASR反應的試驗研究」,人民黃河,第31卷,第六期,第112-113頁,民國98年。
    [18]徐文、錢春香、庄園,「飛灰對混凝土AAR有效鹼的影響及機理」,東南大學學報,第40卷,第四期,第380-384頁,民國100年。
    [19]Michael D.A., Thomas B.F., Kevin J.F., Jason H.I., and Yadhira R., “The use of lithium to prevent or mitigate alkali-silica reaction in concrete pavements and structures,” FHWA-HRT-06-133, Federal Highway Administration, McLean, VA, pp.7-10, 2007.
    [20]Stanton TE., “Expansion of concrete through reaction between cement and aggregate,” Proceedings of the American Society of Civil Engineers, pp.781-811, 1940.
    [21]Duchesne J., and Berube M.A., “Long-term effectiveness of supplementary cementing materials against alkali-silica reaction,” Cement and Concrete Research, Vol.31, pp.1057-1063, 2001.
    [22]Bakker R.F., “About the cause of the resistance of blast furnace cement concrete to the alkali- silica reaction,” Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, 1981.
    [23]Tenoutasse N., and Marion A.M., “Influence of fly ash in alkali-aggregate reaction,” Proceedings of the 7th International Conference on Alkali-Aggregate Reaction in Concrete, pp.44-48, 1986.
    [24]Yoon Hong Sung, and Glasser F.P., “Alkali binding in cement pastes
    part I the C-S-H phase,” Cement and Concrete Research Vol.29, pp.
    1893-1903, 1999.
    [25]Arano N., and Kawamura M., “Comparative consideration on the mechanisms of ASR suppression due to different mineral admixtures,” In: Berube, MA, Fournier, B, Durand B, editors. Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, pp.553-62, 2000.
    [26]George J.Z. Xu, Daniel F. Watt, Peter P. Hudec, “Effectiveness of mineral admixtures in reducing ASR expansion,” Cement and Concrete Research, Vol.25. No.6, pp.1225-1236, 1995.
    [27]Fengyan Wei, Xianghui Lan, Yinong Lv, and Zhongzi Xu, “Effect of pozzolanic reaction products on alkali-silica reaction,” Journal of Wuhan University of Technology-Materials Science Vol.21 No.3, 2006.
    [28]Medhat H. Shehata, and Michael D.A. Thomas, “The role of alkali content of Portland cement on the expansion of concrete prisms
    containing reactive aggregates and supplementary cementing materials,” Cement and Concrete Research Vol.40, pp.569-574, 2010.
    [29]David Hester, Ciaran McNally, and Mark Richardson, “A study of the influence of slag alkali level on the alkali-silica reactivity of slagoncrete,” Construction and Building Materials Vol.19, pp. 661-665, 2005.
    [30]Fournier B., and Berube M.A., “General notions on alkali-aggregate reactions,” Petrography and Alkali-Aggregate Reactivity, CANMET, Ottawa, Canada, pp.7-69, 1991.
    [31]Rogers C.A., “General information on standard alkali-reactive aggregates from Ontario, Canada, Ontario Ministry of Transportation, ”Engineering Materials Office, Downsview, Ontario, pp.59, 1988.
    [32]Nakajima M., Nomachi H., Takada M., and Nishibayashi S., “Effect of admixtures on the expansion characteristics of concrete containing reactive aggregate,” Proceedings of the 9th International Conference on Alkali-Aggregate Reaction in Concrete, Vol.2, pp.690-697, 1992.
    [33]Shehata M.H., and Thomas M.D.A., “The effects of fly ash composition on the expansion of concrete due to alkali-silica reaction, ” Cement and Concrete Research, pp.1063-1072, 2000.
    [34]Shehata M.H., Thomas M.D.A., and Bleszynski R.F., “The effect of fly ash composition on the chemistry of pore solution,” Cement and Concrete Research pp.1915-1920, 1999.
    [35]Nixon P.J., et al., “The effort of pfa with a high total alkali content on pore solution composition and alkali silica reaction,” Magazine of Concrete Research, 1986.
    [36]Lyndon D. Mitchell, James J. Beaudoin, and Patrick Grattan-Bellew, “The effects of lithium hydroxide solution on alkali silica reaction gels created with opal,” Cement and Concrete Research Vol.34, pp. 641-649, 2004.
    [37]Ramachandran V.S., “Alkali-aggregate expansion inhibiting admixtures,” Cement and Concrete Research Vol.20, pp.149-161, 1998.
    [38]Mitsunori Kawamura, and Hirohito Fuwa, “Effects of lithium salts on ASR gel composition and expansion of mortars,” Cement and Concrete Research Vol.33, pp.913-919, 2003.
    [39]Duchesne J., and Berube M.A., “Effect of the cement chemistry and the sample size on ASR expansion of concrete exposed to salt,” Cement and Concrete Research Vol.33, pp.629-634, 2003.
    [40]Feng X., Thomas M.D.A., Bremner T.W., Balcom B.J., Folliard K.J., “Studies on lithium salts to mitigate ASR-induced expansion in new concrete: a critical review,” Cement and Concrete Research Vol.35, pp.1789-1796, 2005.
    [41]Feng X., Thomas M.D.A., Bremner T.W., Folliard K.J., and Fournier B., “New observations on the mechanism of lithium nitrate against alkali-silica reaction,” Cement and Concrete Research, 2009.
    [42]McCoy E.J., and Caldwell A.G., “New approach to inhibiting alkali aggregate expansion,” Journal American Concrete Institute, 1951.
    [43]Sakaguchi T., Takakura M., Kitagawa A., Hori T., Tomozawa F., and Abe M., “The inhibitive effect of lithium compounds on alkali-silica reaction, Proceedings of the 8th International Conference on Alkali-Aggregate Reaction,” pp.229, 1989.
    [44]Stark D.C., “Lithium salt admixtures-an alternative method to prevent expansive alkali-silica reactivity,” Proceedings of the 9th International Conference on Alkali-Aggregate Reaction, pp.1017, 1992.
    [45]Stark D.C., Morgan B., Okamoto P., and Diamond S., “Eliminating or minimizing alkali-silica reactivity,” National Research Council, Washington, DC, SHRP-C-343, 1993.
    [46]Lumley J.S., “ASR suppression by lithium compounds,” Cement and Concrete Research, Vol.27, 1997.
    [47]Durand B., “More results about the use of lithium salts and mineral admixtures to inhibit ASR in concrete,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction, Centre de Recherche Interuniversitaire sur le Beton, Quebec, pp.623, 2000.
    [48]Thomas M., Hooper T., and Stokes D., “Use of lithium-containing compounds to control expansion in concrete due to ASR,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction, Centre de Recherche Interuniversitaire sur le Beton, Quebec, pp.783, 2000.

    QR CODE
    :::