跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳宗羲
Tsung-Hsi Wu
論文名稱: 地震破裂的隨機動力學模型:探討地震過程中的自相似性與摩擦破裂的費雪-夏農表徵
A Stochastic Dynamic Model of Earthquake Rupture: Exploring Self-Similarity and the Fisher-Shannon Characterization in Frictional Failure Processes
指導教授: 陳建志
Chien-Chih Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 128
中文關鍵詞: 地震矩自相似性隨機過程夏農熵費雪資訊量度滑移分布
外文關鍵詞: seismic moment, self-similarity, stochastic process, Shannon Entropy, Fisher Information Measure, slip-distribution
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地震破裂普遍被認為發生在極其異質的應力環境下並涉及摩擦滑移的不穩定性,其複雜與非線性的本質仍是現代地震學許多關鍵議題的核心。鑑於前人研究中所歸納的橫跨岩石剪切實驗與現地地震觀測的尺度不變性,我們將地震破裂視為隨機過程、建立控制此過程的隨機動力學方程式,並基於資訊理論對系統的無序程度進行量化。從一個以摩擦失效類比破裂的一維滑塊模型出發,我們基於朗之萬的方法將破裂過程中動量的傳遞簡化為一馬可夫過程,並使用代表性布朗粒子在速度空間中的軌跡對破裂前緣所發生之剪切滑移的動量狀態之隨機擾動進行描述。透過將代表性布朗粒子的受力拆分為決定性(古典)和隨機(熱動力學)力,多體系統中的力學問題變得實務上可解。我們根據所提出的朗之萬方程式生成大量的樣本路徑,並對相應的福克-普朗克方程式解析求解。結果顯示,系集統計分布的解析解與地震滑移分布的經驗性定律相吻合,而樣本路徑的分析結果則呈現一個在廣泛參數條件下通用且符合區域及全球範圍內地震統計的能量(矩)-持續時間尺度定律。資訊分析結果則顯示,樣本路徑的費雪-夏農表徵可有效區別不同的背景摩擦耗散機制,並能幫助解釋岩石摩擦學的滑動表面結構以及潤滑狀態。總結來說,本研究基於隨機動力學模型為地震斷層之摩擦耗散過程提出一個新的描述框架與相關見解,並展示資訊理論的分析工具在研究地震環境下的岩石磨耗之應用潛力。


    Earthquake ruptures are generally considered to occur in extremely heterogeneous stress environments and involve the instability of frictional sliding.Their complex and nonlinear nature remains at the core of many key issues in modern seismology.Given the scale invariance summarized from previous studies across rock shear experiments and field earthquake observations, we regard earthquake rupture as a stochastic process, establish a stochastic dynamic equation governing this process, and quantify the disorder of the system based on information theory.Starting from a one-dimensional slider model that analogizes rupture as frictional failure, we employ the Langevin approach to simplify the momentum transfer at the rupture front as a Markov process. We use the trajectories of representative Brownian particles in velocity space to describe the fluctuation of the momentum of shear slip at the front where the rupture sweeps by. By decomposing the forces acting on the representative Brownian particle into deterministic (classical) and stochastic (thermodynamic) components, the mechanical problems in multi-body systems become practically solvable. We generate a large number of sample paths based on the proposed Langevin equation and solve the corresponding Fokker-Planck equation analytically. The results show that the analytical solutions of the ensemble statistical distribution coincide with the empirical laws of earthquake slip distribution, and the analysis of sample paths reveals a universal energy (moment)--duration scaling law that aligns with regional and global earthquake statistics under a wide range of parameter conditions. The results of informational analysis indicate that the Fisher-Shannon characterization of sample paths can effectively distinguish different background frictional dissipation mechanisms and help explain the structure and lubrication state of sliding surfaces in rock friction. In summary, our study proposes a stochastic dynamic model that offers a new descriptive framework and insights into the frictional dissipation processes in earthquake faulting, demonstrating the potential application of informational analysis in studying the behavior of rock shearing in seismogenic environments.

    摘要................................................ix Abstract............................................xi 致謝................................................xiii 目錄................................................xv 使用符號、定義與中英翻譯對照............................xxi 一、緒論.............................................1 1.1 文獻回顧........................................ 1 1.1.1 地震與庫倫摩擦的滯滑移類比....................... 1 1.1.2 地震破裂模擬中的運動和動力學方法.................. 2 1.1.3 自地震的複雜特徵中浮現之自相似性質................ 3 1.1.4 隨機過程與非線性多體系統......................... 4 1.2 動機與目的....................................... 6 二、資料與方法(公式與演算法) ...........................9 2.1 地震破裂力學的朗之萬方程式..........................9 2.1.1 古典滑塊模型與破裂理論............................9 2.1.2 破裂失效傳播過程的馬可夫近似......................14 2.2 朗之萬方程式的求解.................................17 2.2.1 描述地震破裂的隨機微分方程式......................17 2.2.2 兩個極端案例:完全由庫倫或黏滯摩擦機制支配的 摩擦過程.............................................18 2.3 資訊理論在模擬與實驗觀測得到之樣本路徑分析上的應用.... 19 2.3.1 費雪訊息與夏農熵................................19 2.3.2 基於岩石旋切實驗觀測探究地震破裂前緣活躍的機制...... 22 三、實驗結果27 3.1 福克-普朗克方程式的解析解與經驗性破裂滑移分布定律.... 27 3.2 模擬事件之能量-持續時間關係....................... 33 3.3 摩擦破裂過程的時間動態複雜度之量化.................. 36 3.3.1 兩種極端情境下模擬事件之費雪-夏農分析............ 36 3.3.2 旋切實驗摩擦過程的費雪-夏農分析................. 37 四、討論.............................................49 4.1 實驗與模擬地震破裂過程的費雪-夏農表徵分析........... 49 4.1.1 朗之萬方程式模擬破裂動量狀態的費雪-夏農表徵....... 49 4.1.2 岩石旋切實驗的受力狀態之費雪-夏農表徵............ 52 4.2 由朗之萬及福克-普朗克方程式所揭露的地震統計尺度定律... 56 4.2.1 能量-持續時間的尺度定律........................ 56 4.2.2 破裂滑移的分布定律............................. 61 4.2.3 本研究與地震量子概念的關聯性..................... 63 4.2.4 從斷層的幾何相似性審視地震矩–持續時間的尺度定律..... 65 五、總結.............................................71 參考文獻.............................................73

    [1] W. T. Coffey, Y. P. Kalmykov, and J. T. Waldron, The Langevin Equation: With
    Applications In Physics, Chemistry And Electrical Engineering. World Scientific,
    Jul. 1996, vol. 10, isbn: 978-981-4502-40-5.
    [2] H. Kanamori and D. L. Anderson, “Theoretical basis of some empirical relations
    in seismology,” Bulletin of the Seismological Society of America, vol. 65, no. 5,
    pp. 1073–1095, Oct. 1975, issn: 0037-1106.
    [3] C. H. Scholz, “Scaling laws for large earthquakes: Consequences for physical models,”
    Bulletin of the Seismological Society of America, vol. 72, no. 1, pp. 1–14, Feb.
    1982, issn: 0037-1106.
    [4] G. A. Pavliotis, Stochastic Processes and Applications: Diffusion Processes, the
    Fokker-Planck and Langevin Equations (Texts in Applied Mathematics). New
    York: Springer-Verlag, 2014, isbn: 978-1-4939-1322-0. doi: 10 . 1007 / 978 - 1 -
    4939-1323-7.
    [5] R. M. Gray, “Ergodic theorems,” in Probability, Random Processes, and Ergodic
    Properties, R. M. Gray, Ed., Boston, MA: Springer US, 2009, pp. 239–262, isbn:
    978-1-4419-1090-5. doi: 10.1007/978-1-4419-1090-5_8.
    [6] 吳宗羲, “地震破裂的隨機動力模型,” 國立中央大學, 桃園縣, 2018, 92 pp. [Online].
    Available: https://hdl.handle.net/11296/29k28a.
    [7] A. Sornette and D. Sornette, “Self-organized criticality and earthquakes,” Europhysics
    Letters, vol. 9, no. 3, p. 197, Jun. 1989, issn: 0295-5075. doi: 10.1209/
    0295-5075/9/3/002. [Online]. Available: https://dx.doi.org/10.1209/0295-
    5075/9/3/002 (visited on 02/15/2024).
    [8] D. Sornette, “Self-organized criticality in plate tectonics,” in Spontaneous Formation
    of Space-Time Structures and Criticality, T. Riste and D. Sherrington, Eds.,
    Dordrecht: Springer Netherlands, 1991, pp. 57–106, isbn: 978-94-011-3508-5. doi:
    10.1007/978- 94- 011- 3508- 5_6. [Online]. Available: https://doi.org/10.
    1007/978-94-011-3508-5_6.
    [9] G. Albertini, S. Karrer, M. D. Grigoriu, and D. S. Kammer, “Stochastic properties
    of static friction,” Journal of the Mechanics and Physics of Solids, p. 104 242, Nov.
    2020, issn: 0022-5096. doi: 10.1016/j.jmps.2020.104242.
    [10] W. F. Brace and J. D. Byerlee, “Stick-slip as a mechanism for earthquakes,”
    Science, vol. 153, no. 3739, pp. 990–992, Aug. 1966, issn: 0036-8075, 1095-9203.
    doi: 10.1126/science.153.3739.990.
    [11] C. H. Scholz, The Mechanics of Earthquakes and Faulting. Cambridge University
    Press, 1990, isbn: 0-521-40760-5.
    [12] D. A. Haessig and B. Friedland, “On the modeling and simulation of friction,”
    Journal of Dynamic Systems, Measurement, and Control, vol. 113, no. 3, pp. 354–
    362, Sep. 1991, issn: 0022-0434, 1528-9028. doi: 10.1115/1.2896418.
    [13] B. M. Kaproth and C. Marone, “Slow earthquakes, preseismic velocity changes,
    and the origin of slow frictional stick-slip,” Science, vol. 341, no. 6151, pp. 1229–
    1232, Sep. 2013, issn: 0036-8075, 1095-9203. doi: 10.1126/science.1239577.
    [14] A. Ruina, “Slip instability and state variable friction laws,” Journal of Geophysical
    Research: Solid Earth, vol. 88, no. B12, pp. 10 359–10 370, Dec. 1983, issn: 0148-
    0227. doi: 10.1029/JB088iB12p10359.
    [15] P. G. Okubo and J. H. Dieterich, “Effects of physical fault properties on frictional
    instabilities produced on simulated faults,” Journal of Geophysical Research: Solid
    Earth, vol. 89, no. B7, pp. 5817–5827, 1984, issn: 2156-2202. doi: 10 . 1029 /
    JB089iB07p05817.
    [16] F. Adjemian and P. Evesque, “Experimental study of stick-slip behaviour,” International
    Journal for Numerical and Analytical Methods in Geomechanics, vol. 28,
    no. 6, pp. 501–530, 2004, issn: 1096-9853. doi: 10.1002/nag.350.
    [17] C. A. Vargas, E. Basurto, L. Guzmán-Vargas, and F. Angulo-Brown, “Sliding size
    distribution in a simple spring-block system with asperities,” Physica A: Statistical
    Mechanics and its Applications, vol. 387, no. 13, pp. 3137–3144, May 2008, issn:
    0378-4371. doi: 10.1016/j.physa.2008.01.108.
    [18] M. Ohnaka, Y. Kuwahara, K. Yamamoto, and T. Hirasawa, “Dynamic breakdown
    processes and the generating mechanism for high-frequency elastic radiation
    during stick-slip instabilities,” in Earthquake Source Mechanics, American Geophysical
    Union (AGU), 1986, pp. 13–24, isbn: 978-1-118-66486-5. doi: 10.1029/
    GM037p0013.
    [19] L. R. Moreno-Torres, A. Gomez-Vieyra, M. Lovallo, A. Ramírez-Rojas, and L.
    Telesca, “Investigating the interaction between rough surfaces by using the Fisher–
    Shannon method: Implications on interaction between tectonic plates,” Physica A:
    Statistical Mechanics and its Applications, vol. 506, pp. 560–565, Sep. 2018, issn:
    0378-4371. doi: 10.1016/j.physa.2018.04.023.
    [20] J. Wojewoda, A. Stefański, M. Wiercigroch, and T. Kapitaniak, “Hysteretic effects
    of dry friction: Modelling and experimental studies,” Philosophical Transactions
    of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 366,
    no. 1866, pp. 747–765, Mar. 2008. doi: 10.1098/rsta.2007.2125.
    [21] L. Pei, S. Hyun, J. F. Molinari, and M. O. Robbins, “Finite element modeling
    of elasto-plastic contact between rough surfaces,” Journal of the Mechanics and
    Physics of Solids, vol. 53, no. 11, pp. 2385–2409, Nov. 2005, issn: 0022-5096. doi:
    10.1016/j.jmps.2005.06.008.
    [22] D. Monelli and P. M. Mai, “Bayesian inference of kinematic earthquake rupture
    parameters through fitting of strong motion data,” Geophys. J. Int., vol. 173,
    no. 1, pp. 220–232, Apr. 2008, issn: 0956-540X. doi: 10.1111/j.1365- 246X.
    2008.03733.x. [Online]. Available: https://onlinelibrary.wiley.com/doi/
    full/10.1111/j.1365-246X.2008.03733.x (visited on 08/05/2019).
    [23] A. H. Olson and R. J. Apsel, “Finite faults and inverse theory with applications
    to the 1979 Imperial Valley earthquake,” Bull. Seismol. Soc. Am., vol. 72, no. 6A,
    pp. 1969–2001, Dec. 1982, issn: 0037-1106. [Online]. Available: https://pubs.
    geoscienceworld . org / ssa / bssa / article / 72 / 6A / 1969 / 337982 / finite -
    faults-and-inverse-theory-with-applications (visited on 07/17/2019).
    [24] N. A. Haskell, “Elastic displacements in the near-field of a propagating fault,”
    Bull. Seismol. Soc. Am., vol. 59, no. 2, pp. 865–908, Apr. 1969, issn: 0037-1106.
    [Online]. Available: https://pubs.geoscienceworld.org/ssa/bssa/article/
    59/2/865/116741/elastic-displacements-in-the-near-field-of-a (visited
    on 07/17/2019).
    [25] A. Ozgun Konca, Y. Kaneko, N. Lapusta, and J.-P. Avouac, “Kinematic inversion
    of physically plausible earthquake source models obtained from dynamic rupture
    simulations,” Bull. Seismol. Soc. Am., vol. 103, no. 5, pp. 2621–2644, Oct. 2013,
    issn: 0037-1106. doi: 10.1785/0120120358. [Online]. Available: https://pubs.
    geoscienceworld.org/bssa/article/103/5/2621- 2644/349786 (visited on
    07/17/2019).
    [26] S. Peyrat and K. B. Olsen, “Nonlinear dynamic rupture inversion of the 2000
    Western Tottori, Japan, earthquake,” Geophys. Res. Lett., vol. 31, no. 5, Mar.
    2004, issn: 0094-8276. doi: 10.1029/2003GL019058. [Online]. Available: https:
    / / agupubs . onlinelibrary . wiley . com / doi / full / 10 . 1029 / 2003GL019058
    (visited on 08/01/2019).
    [27] S. H. Hartzell and T. H. Heaton, “Inversion of strong ground motion and teleseismic
    waveform data for the fault rupture history of the 1979 Imperial Valley, California,
    earthquake,” Bull. Seismol. Soc. Am., vol. 73, no. 6A, pp. 1553–1583, Dec.
    1983, issn: 0037-1106. [Online]. Available: https : / / pubs . geoscienceworld .
    org/ssa/bssa/article/73/6A/1553/118510/inversion-of-strong-groundmotion-
    and-teleseismic (visited on 07/29/2019).
    [28] R. Madariaga, “Seismic source theory,” in Treatise on Geophysics, Elsevier, 2007,
    pp. 59–82, isbn: 978-0-444-52748-6. doi: 10.1016/B978-044452748-6.00061-
    4. [Online]. Available: https : / / linkinghub . elsevier . com / retrieve / pii /
    B9780444527486000614 (visited on 08/05/2019).
    [29] R. Madariaga and K. B. Olsen, “Earthquake dynamics,” International Geophysics
    Series, vol. 81, no. A, pp. 175–194, 2002, issn: 0074-6142.
    [30] D. J. Wald, D. V. Helmberger, and T. H. Heaton, “Rupture model of the 1989
    Loma Prieta earthquake from the inversion of strong-motion and broadband teleseismic
    data,” Bull. Seismol. Soc. Am., vol. 81, no. 5, pp. 1540–1572, Oct. 1991,
    issn: 0037-1106. [Online]. Available: https://pubs.geoscienceworld.org/ssa/
    bssa / article / 81 / 5 / 1540 / 119510 / rupture - model - of - the - 1989 - loma -
    prieta-earthquake (visited on 07/29/2019).
    [31] S. Ide, “4.09-slip inversion,” Treatise on geophysics, 2nd edn. Elsevier, Oxford,
    pp. 215–241, 2015.
    [32] Y.-Y. Wen, D. D. Oglesby, B. Duan, and K.-F. Ma, “Dynamic rupture simulation
    of the 2008 Mw 7.9 Wenchuan earthquake with heterogeneous initial stress,” Bull.
    Seismol. Soc. Am., vol. 102, no. 4, pp. 1892–1898, Aug. 2012, issn: 0037-1106. doi:
    10.1785/0120110153. [Online]. Available: https://pubs.geoscienceworld.
    org/bssa/article/102/4/1892-1898/325530 (visited on 08/05/2019).
    [33] T. Mikumo, K. B. Olsen, E. Fukuyama, and Y. Yagi, “Stress-breakdown time and
    slip-weakening distance inferred from slip-velocity functions on earthquake faults,”
    Bull. Seismol. Soc. Am., vol. 93, no. 1, pp. 264–282, 2003, issn: 1943-3573.
    [34] K. B. Olsen, R. Madariaga, and R. J. Archuleta, “Three-dimensional dynamic
    simulation of the 1992 Landers earthquake,” Science, vol. 278, no. 5339, pp. 834–
    838, Oct. 1997, issn: 0036-8075, 1095-9203. doi: 10.1126/science.278.5339.
    834. [Online]. Available: https : / / science . sciencemag . org / content / 278 /
    5339/834 (visited on 08/05/2019).
    [35] P. Bormann, “From earthquake prediction research to time-variable seismic hazard
    assessment applications,” Pure and Applied Geophysics, vol. 168, no. 1, pp. 329–
    366, Jan. 1, 2011, issn: 1420-9136. doi: 10.1007/s00024- 010- 0114- 0. [Online].
    Available: https://doi.org/10.1007/s00024- 010- 0114- 0 (visited on
    02/02/2024).
    [36] D. E. Smith and J. H. Dieterich, “Aftershock sequences modeled with 3-D stress
    heterogeneity and rate-state seismicity equations: Implications for crustal stress
    estimation,” Pure and Applied Geophysics, vol. 167, no. 8, pp. 1067–1085, Aug. 1,
    2010, issn: 1420-9136. doi: 10.1007/s00024-010-0093-1. [Online]. Available:
    https://doi.org/10.1007/s00024-010-0093-1 (visited on 02/02/2024).
    [37] A. Helmstetter and B. E. Shaw, “Relation between stress heterogeneity and aftershock
    rate in the rate-and-state model,” Journal of Geophysical Research: Solid
    Earth, vol. 111, no. B7, 2006, issn: 2156-2202. doi: 10 . 1029 / 2005JB004077.
    [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1029/
    2005JB004077 (visited on 02/02/2024).
    [38] L. Rivera and H. Kanamori, “Spatial heterogeneity of tectonic stress and friction
    in the crust,” Geophysical Research Letters, vol. 29, no. 6, pp. 12-1-12–4, 2002,
    issn: 1944-8007. doi: 10.1029/2001GL013803.
    [39] M. Ohnaka, M. Akatsu, H. Mochizuki, A. Odedra, F. Tagashira, and Y. Yamamoto,
    “A constitutive law for the shear failure of rock under lithospheric conditions,”
    Tectonophysics, Earthquake Generation Processes: Environmental Aspects
    and Physical Modelling, vol. 277, no. 1, pp. 1–27, Aug. 1997, issn: 0040-1951. doi:
    10.1016/S0040-1951(97)00075-9.
    [40] J. B. Rundle, D. L. Turcotte, R. Shcherbakov, W. Klein, and C. Sammis, “Statistical
    physics approach to understanding the multiscale dynamics of earthquake
    fault systems,” Reviews of Geophysics, vol. 41, no. 4, p. 1019, Dec. 2003, issn:
    1944-9208. doi: 10.1029/2003RG000135.
    [41] C. H. Scholz and C. A. Aviles, “The fractal geometry of faults and faulting,”
    in Earthquake Source Mechanics, American Geophysical Union (AGU), 1986,
    pp. 147–155, isbn: 978-1-118-66486-5. doi: 10.1029/GM037p0147.
    [42] A. Carpinteri and M. Paggi, “A fractal interpretation of size-scale effects on
    strength, friction and fracture energy of faults,” Chaos, Solitons and Fractals,
    vol. 39, no. 2, pp. 540–546, Jan. 2009, issn: 0960-0779.
    [43] T. H. W. Goebel, C. G. Sammis, T. W. Becker, G. Dresen, and D. Schorlemmer,
    “A comparison of seismicity characteristics and fault structure between stick–slip
    experiments and nature,” Pure and Applied Geophysics, vol. 172, no. 8, pp. 2247–
    2264, Aug. 2015, issn: 1420-9136. doi: 10.1007/s00024-013-0713-7.
    [44] R. J. Geller, “Scaling relations for earthquake source parameters and magnitudes,”
    Bulletin of the Seismological Society of America, vol. 66, no. 5, pp. 1501–1523, Oct.
    1976, issn: 0037-1106.
    [45] D. Legrand, “Fractal dimensions of small, intermediate, and large earthquakes,”
    Bulletin of the Seismological Society of America, vol. 92, no. 8, pp. 3318–3320,
    Dec. 2002, issn: 0037-1106. doi: 10.1785/0120020025.
    [46] J.-H. Wang, “A review on scaling of earthquake source spectra,” Surveys in Geophysics,
    vol. 40, no. 2, pp. 133–166, Mar. 2019, issn: 1573-0956. doi: 10.1007/
    s10712-019-09512-4.
    [47] S. R. Brown and C. H. Scholz, “Closure of random elastic surfaces in contact,”
    Journal of Geophysical Research: Solid Earth, vol. 90, no. B7, pp. 5531–5545, 1985,
    issn: 2156-2202. doi: 10.1029/JB090iB07p05531.
    [48] S. R. Brown and C. H. Scholz, “Broad bandwidth study of the topography of natural
    rock surfaces,” Journal of Geophysical Research: Solid Earth, vol. 90, no. B14,
    pp. 12 575–12 582, 1985, issn: 2156-2202. doi: 10.1029/JB090iB14p12575.
    [49] F. Renard and T. Candela, “Scaling of fault roughness and implications for earthquake
    mechanics,” in Fault Zone Dynamic Processes, American Geophysical Union
    (AGU), 2017, ch. 10, pp. 195–215, isbn: 978-1-119-15689-5. doi: 10.1002/9781119156895.
    ch10.
    [50] Y. Y. Kagan, “Are earthquakes predictable?” Geophysical Journal International,
    vol. 131, no. 3, pp. 505–525, Dec. 1997, issn: 0956-540X. doi: 10.1111/j.1365-
    246X.1997.tb06595.x.
    [51] C. A. Aviles, C. H. Scholz, and J. Boatwright, “Fractal analysis applied to characteristic
    segments of the San Andreas Fault,” Journal of Geophysical Research:
    Solid Earth, vol. 92, no. B1, pp. 331–344, 1987, issn: 2156-2202. doi: 10.1029/
    JB092iB01p00331.
    [52] B. Velde, J. Dubois, D. Moore, and G. Touchard, “Fractal patterns of fractures
    in granites,” Earth and Planetary Science Letters, vol. 104, no. 1, pp. 25–35, May
    1991, issn: 0012-821X. doi: 10.1016/0012-821X(91)90234-9.
    [53] K. Aki, “Magnitude-frequency relation for small earthquakes: A clue to the origin
    of ƒmax of large earthquakes,” Journal of Geophysical Research: Solid Earth,
    vol. 92, no. B2, pp. 1349–1355, 1987, issn: 2156-2202. doi: 10.1029/JB092iB02p01349.
    [54] T. Hirata, “Fractal dimension of fault systems in Japan: Fractal structure in rock
    fracture geometry at various scales,” Pure Appl Geophys, vol. 131, no. 1, pp. 157–
    170, Mar. 1989, issn: 1420-9136. doi: 10.1007/BF00874485. [Online]. Available:
    https://doi.org/10.1007/BF00874485 (visited on 10/29/2018).
    [55] L. A. Sunmonu and V. P. Dimri, “Fractal geometry of faults and seismicity
    of Koyna-Warna region west india using LANDSAT images,” Pure Appl Geophys,
    vol. 157, no. 9, pp. 1393–1405, Sep. 2000, issn: 1420-9136. doi: 10.1007/
    PL00001125. [Online]. Available: https://doi.org/10.1007/PL00001125 (visited
    on 10/29/2018).
    [56] T. Babadagli and K. Develi, “Fractal characteristics of rocks fractured under tension,”
    Theor Appl Fract Mech, vol. 39, no. 1, pp. 73–88, 2003, issn: 0167-8442.
    [57] X. L. Xu and Z. Z. Zhang, “Fractal characteristics of rock fracture surface under
    triaxial compression after high temperature,” Adv Mater Sci Eng, vol. 2016, pp. 1–
    10, 2016, issn: 1687-8434, 1687-8442. doi: 10 . 1155 / 2016 / 2181438. [Online].
    Available: https://www.hindawi.com/journals/amse/2016/2181438/ (visited
    on 10/29/2018).
    [58] P. Bak and M. Creutz, “Fractals and self-organized criticality,” in Fractals in Science,
    A. Bunde and S. Havlin, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
    1994, pp. 27–48, isbn: 978-3-662-11779-8 978-3-662-11777-4. doi: 10.1007/978-
    3-662-11777-4_2. [Online]. Available: http://link.springer.com/10.1007/
    978-3-662-11777-4_2 (visited on 02/15/2024).
    [59] C. Hooge, S. Lovejoy, D. Schertzer, S. Pecknold, J.-F. Malouin, and F. Schmitt,
    “Mulifractal phase transitions: The origin of self-organized criticality in earthquakes,”
    Nonlinear Processes in Geophysics, vol. 1, no. 2/3, pp. 191–197, Sep. 30,
    1994, issn: 1607-7946. doi: 10 . 5194 / npg - 1 - 191 - 1994. [Online]. Available:
    https://npg.copernicus.org/articles/1/191/1994/ (visited on 02/15/2024).
    [60] C. H. Scholz, “Earthquakes and faulting: Self-organized critical phenomena with a
    characteristic dimension,” in Spontaneous Formation of Space-Time Structures and
    Criticality, T. Riste and D. Sherrington, Eds., Dordrecht: Springer Netherlands,
    1991, pp. 41–56, isbn: 978-94-011-3508-5. doi: 10.1007/978-94-011-3508-5_5.
    [Online]. Available: https://doi.org/10.1007/978-94-011-3508-5_5.
    [61] C. W. Gardiner, “Handbook of stochastic processes,” Springer-Verlag, Berlin,
    1985.
    [62] W. T. Coffey and Y. P. Kalmykov, The Langevin Equation: With Applications to
    Stochastic Problems in Physics, Chemistry and Electrical Engineering. World Scientific,
    Jul. 31, 2012, 850 pp., isbn: 978-981-4483-80-3. Google Books: pi27CgAAQBAJ.
    [63] P. M. Mai and G. C. Beroza, “A spatial random field model to characterize
    complexity in earthquake slip,” Journal of Geophysical Research: Solid Earth,
    vol. 107, no. B11, ESE 10-1-ESE 10–21, 2002, issn: 2156-2202. doi: 10.1029/
    2001JB000588.
    [64] D. Lavallée, P. Liu, and R. J. Archuleta, “Stochastic model of heterogeneity in
    earthquake slip spatial distributions,” Geophysical Journal International, vol. 165,
    no. 2, pp. 622–640, May 2006, issn: 0956-540X. doi: 10.1111/j.1365- 246X.
    2006.02943.x.
    [65] J. Sun, Y. Yu, and Y. Li, “Stochastic finite-fault simulation of the 2017 Jiuzhaigou
    earthquake in China,” Earth, Planets and Space, vol. 70, no. 1, p. 128, Aug. 2018,
    issn: 1880-5981. doi: 10.1186/s40623-018-0897-2.
    [66] S. Murphy and A. Herrero, “Surface rupture in stochastic slip models,” Geophysical
    Journal International, vol. 221, no. 2, pp. 1081–1089, May 2020, issn: 0956-540X.
    doi: 10.1093/gji/ggaa055.
    [67] V. C. Tsai and G. Hirth, “Elastic impact consequences for high-frequency earthquake
    ground motion,” Geophysical Research Letters, vol. 47, no. 5, e2019GL086302,
    2020, issn: 1944-8007. doi: 10.1029/2019GL086302.
    [68] M. Otsuka, “A chain-reaction-type source model as a tool to interpret the magnitudefrequency
    relation of earthquakes,” Journal of Physics of the Earth, vol. 20, no. 1,
    pp. 35–45, 1972, issn: 0022-3743.
    [69] D. Vere-Jones, “A branching model for crack propagation,” Pure Appl Geophys,
    vol. 114, no. 4, pp. 711–725, 1976, issn: 0033-4553, 1420-9136. doi: 10.1007/
    BF00875663. [Online]. Available: http://link.springer.com/10.1007/BF00875663
    (visited on 07/23/2018).
    [70] K. Watanabe, “Stochastic evaluation of the two dimensional continuity of fractures
    in a rock mass,” International Journal of Rock Mechanics and Mining Sciences
    & Geomechanics Abstracts, vol. 23, no. 6, pp. 431–437, Dec. 1986, issn: 0148-
    9062. doi: 10 . 1016 / 0148 - 9062(86 ) 92308 - 9. [Online]. Available: http : / /
    www.sciencedirect.com/science/article/pii/0148906286923089 (visited on
    02/11/2019).
    [71] Y. Y. Kagan, “Stochastic model of earthquake fault geometry,” Geophys J R
    Astron Soc, vol. 71, no. 3, pp. 659–691, Dec. 1982, issn: 1365-246X. doi: 10.1111/
    j.1365-246X.1982.tb02791.x. [Online]. Available: https://onlinelibrary.
    wiley . com / doi / abs / 10 . 1111 / j . 1365 - 246X . 1982 . tb02791 . x (visited on
    10/28/2018).
    [72] J. Zhuang and S. Touati, “Stochastic simulation of earthquake catalogs,” Community
    Online Resource for Statistical Seismicity Analysis, 2015. doi: 10.5078/
    corssa-43806322.
    [73] A. M. Selvam, “Universal quantification for deterministic chaos in dynamical systems,”
    arXiv:physics/0008010, Aug. 2000, arXiv: physics/0008010. [Online]. Available:
    http://arxiv.org/abs/physics/0008010 (visited on 01/31/2019).
    [74] M. Cattani, I. L. Caldas, S. L. d. Souza, et al., “Deterministic chaos theory:
    Basic concepts,” Revista Brasileira de Ensino de Física, vol. 39, no. 1, 2017, issn:
    1806-1117. doi: 10 . 1590 / 1806 - 9126 - rbef - 2016 - 0185. [Online]. Available:
    http : / / www . scielo . br / scielo . php ? script = sci _ abstract & pid = S1806 -
    11172017000100409&lng=en&nrm=iso&tlng=en (visited on 01/31/2019).
    [75] F. Cecconi, M. Cencini, M. Falcioni, and A. Vulpiani, “Brownian motion and diffusion:
    From stochastic processes to chaos and beyond,” Chaos: An Interdisciplinary
    Journal of Nonlinear Science, vol. 15, no. 2, p. 026 102, Jun. 2005, issn: 1054-1500.
    doi: 10.1063/1.1832773. [Online]. Available: https://aip.scitation.org/
    doi/abs/10.1063/1.1832773 (visited on 03/26/2018).
    [76] J. .-. Eckmann, “Roads to turbulence in dissipative dynamical systems,” Rev Mod
    Phys, vol. 53, no. 4, pp. 643–654, Oct. 1981. doi: 10.1103/RevModPhys.53.643.
    [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.53.643
    (visited on 03/26/2018).
    [77] J. B. Rundle, D. L. Turcotte, R. Shcherbakov, W. Klein, and C. Sammis, “Statistical
    physics approach to understanding the multiscale dynamics of earthquake fault
    systems,” Rev Geophys, vol. 41, no. 4, p. 1019, Dec. 2003, issn: 1944-9208. doi:
    10.1029/2003RG000135. [Online]. Available: http://onlinelibrary.wiley.
    com/doi/10.1029/2003RG000135/abstract (visited on 09/11/2017).
    [78] A. Einstein, Investigation on the Theory of the Brownian Movement, R. Fürth,
    Ed., trans. by A. D. Cowper. Mineola: Dover, 2003, isbn: 978-0-486-60304-9.
    [79] J. Renn, “Einstein’s invention of Brownian motion,” Annalen der Physik, vol. 14,
    no. S1, pp. 23–37, 2005, issn: 1521-3889. doi: 10.1002/andp.200410131.
    [80] P. Hänggi and F. Marchesoni, “Introduction: 100 years of Brownian motion,”
    Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 15, no. 2, p. 026 101,
    Jun. 2005, issn: 1054-1500. doi: 10.1063/1.1895505.
    [81] W. T. Coffey and Y. P. Kalmykov, The Langevin Equation: With Applications
    to Stochastic Problems in Physics, Chemistry and Electrical Engineering. World
    Scientific, Jul. 2012, Google-Books-ID: pi27CgAAQBAJ, isbn: 978-981-4483-80-3.
    [82] K. Itō, On Stochastic Differential Equations. American Mathematical Society,
    1951, isbn: 978-0-8218-9983-0.
    [83] N. G. van Kampen, Stochastic Processes in Physics and Chemistry. North-Holland,
    1981, isbn: 978-0-444-86200-6.
    [84] D. S. Lemons and A. Gythiel, “Paul Langevin’s 1908 paper “On the Theory of
    Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci.
    (Paris) 146, 530–533 (1908)],” American Journal of Physics, vol. 65, no. 11,
    pp. 1079–1081, Nov. 1997, issn: 0002-9505. doi: 10.1119/1.18725.
    [85] J. Renn, “Einstein’s invention of Brownian motion,” Ann Phys, vol. 14, no. S1,
    pp. 23–37, 2005, issn: 1521-3889. doi: 10.1002/andp.200410131.
    [86] R. Yulmetyev, R. Khusnutdinoff, T. Tezel, Y. Iravul, B. Tuzel, and P. Hänggi,
    “The study of dynamic singularities of seismic signals by the generalized Langevin
    equation,” Physica A, vol. 388, no. 17, pp. 3629–3635, Sep. 2009, issn: 0378-
    4371. doi: 10.1016/j.physa.2009.05.010. [Online]. Available: http://www.
    sciencedirect . com / science / article / pii / S0378437109003744 (visited on
    12/14/2018).
    [87] H. Eslamizadeh and H. Razazzadeh, “Statistical and dynamical modeling of heavyion
    fusion–fission reactions,” Phys Lett B, vol. 777, pp. 265–269, Feb. 2018, issn:
    0370-2693. doi: 10.1016/j.physletb.2017.12.029. [Online]. Available: http://
    www.sciencedirect.com/science/article/pii/S0370269317310067 (visited
    on 05/18/2018).
    [88] J. B. Rundle, W. Klein, and S. Gross, “Dynamics of a traveling density wave model
    for earthquakes,” Phys Rev Lett, vol. 76, no. 22, pp. 4285–4288, May 1996, issn:
    1079-7114. doi: 10.1103/PhysRevLett.76.4285.
    [89] S. Nakamula, M. Takeo, Y. Okabe, and M. Matsuura, “Automatic seismic wave
    arrival detection and picking with stationary analysis: Application of the KM2o-
    Langevin equations,” Earth Planets Space, vol. 59, no. 6, pp. 567–577, Jun. 2007,
    issn: 1880-5981. doi: 10.1186/BF03352719. [Online]. Available: http://earthplanets-
    space.springeropen.com/articles/10.1186/BF03352719 (visited on
    10/28/2018).
    [90] S. Boutareaud, D.-G. Calugaru, R. Han, et al., “Clay-clast aggregates: A new
    textural evidence for seismic fault sliding?” Geophysical Research Letters, vol. 35,
    no. 5, 2008, issn: 1944-8007. doi: 10.1029/2007GL032554. [Online]. Available:
    https://onlinelibrary.wiley.com/doi/abs/10.1029/2007GL032554 (visited
    on 07/28/2023).
    [91] N. Brantut, A. Schubnel, J.-N. Rouzaud, F. Brunet, and T. Shimamoto, “Highvelocity
    frictional properties of a clay-bearing fault gouge and implications for
    earthquake mechanics,” Journal of Geophysical Research: Solid Earth, vol. 113,
    no. B10, 2008, issn: 2156-2202. doi: 10.1029/2007JB005551. [Online]. Available:
    https://onlinelibrary.wiley.com/doi/abs/10.1029/2007JB005551 (visited
    on 07/28/2023).
    [92] X. Chen, A. S. Elwood Madden, and Z. Reches, “Friction evolution of granitic
    faults: Heating controlled transition from powder lubrication to frictional melt,”
    Journal of Geophysical Research: Solid Earth, vol. 122, no. 11, pp. 9275–9289,
    2017, issn: 2169-9356. doi: 10.1002/2017JB014462. [Online]. Available: https:
    / / onlinelibrary . wiley . com / doi / abs / 10 . 1002 / 2017JB014462 (visited on
    01/21/2024).
    [93] X. Chen, A. S. E. Madden, and Z. Reches, “Powder rolling as a mechanism of
    dynamic fault weakening,” in Fault Zone Dynamic Processes, American Geophysical
    Union (AGU), 2017, pp. 133–150, isbn: 978-1-119-15689-5. doi: 10.1002/
    9781119156895.ch7. [Online]. Available: https://onlinelibrary.wiley.com/
    doi/abs/10.1002/9781119156895.ch7 (visited on 07/28/2023).
    [94] C.-C. Hung, L.-W. Kuo, E. Spagnuolo, et al., “Grain fragmentation and frictional
    melting during initial experimental deformation and implications for seismic slip
    at shallow depths,” Journal of Geophysical Research: Solid Earth, vol. 124, no. 11,
    pp. 11 150–11 169, 2019, issn: 2169-9356. doi: 10.1029/2019JB017905. [Online].
    Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
    2019JB017905 (visited on 11/05/2020).
    [95] C. E. Shannon, “A mathematical theory of communication,” The Bell System
    Technical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948, issn: 0005-8580. doi:
    10.1002/j.1538-7305.1948.tb01338.x.
    [96] M. Martin, F. Pennini, and A. Plastino, “Fisher’s information and the analysis of
    complex signals,” Phys Lett A, vol. 256, no. 2-3, pp. 173–180, 1999, issn: 0375-
    9601.
    [97] M. T. Martin, J. Perez, and A. Plastino, “Fisher information and nonlinear dynamics,”
    Physica A, vol. 291, no. 1, pp. 523–532, 2001. [Online]. Available: https:
    //ideas.repec.org/a/eee/phsmap/v291y2001i1p523- 532.html (visited on
    12/18/2018).
    [98] M. Lovallo and L. Telesca, “Complexity measures and information planes of xray
    astrophysical sources,” J Stat Mech: Theory Exp, vol. 2011, no. 03, P03029,
    2011, issn: 1742-5468. doi: 10 . 1088 / 1742 - 5468 / 2011 / 03 / P03029. [Online].
    Available: http://stacks.iop.org/1742-5468/2011/i=03/a=P03029 (visited
    on 12/18/2018).
    [99] L. Telesca and M. Lovallo, “Analysis of the time dynamics in wind records by
    means of multifractal detrended fluctuation analysis and the Fisher–Shannon
    information plane,” J Stat Mech: Theory Exp, vol. 2011, no. 07, P07001, 2011, issn:
    1742-5468. doi: 10.1088/1742-5468/2011/07/P07001. [Online]. Available: http:
    //stacks.iop.org/1742-5468/2011/i=07/a=P07001 (visited on 12/18/2018).
    [100] L. Telesca, M. Lovallo, H.-L. Hsu, and C.-C. Chen, “Analysis of dynamics in
    magnetotelluric data by using the Fisher–Shannon method,” Physica A, vol. 390,
    no. 7, pp. 1350–1355, 2011, issn: 0378-4371.
    [101] L. Telesca, M. Lovallo, and R. Carniel, “Time-dependent Fisher Information Measure
    of volcanic tremor before the 5 April 2003 paroxysm at Stromboli volcano,
    Italy,” J Volcanol Geotherm Res, vol. 195, no. 1, pp. 78–82, 2010, issn: 0377-0273.
    [102] L. Telesca, M. Lovallo, A. Ramirez-Rojas, and F. Angulo-Brown, “A nonlinear
    strategy to reveal seismic precursory signatures in earthquake-related self-potential
    signals,” Physica A, vol. 388, no. 10, pp. 2036–2040, 2009, issn: 0378-4371.
    [103] M. Nosonovsky, “Entropy in tribology: In the search for applications,” Entropy,
    vol. 12, no. 6, pp. 1345–1390, Jun. 2010. doi: 10.3390/e12061345. [Online]. Available:
    https://www.mdpi.com/1099-4300/12/6/1345 (visited on 12/18/2018).
    [104] P. Fleurquin, H. Fort, M. Kornbluth, R. Sandler, M. Segall, and F. Zypman,
    “Negentropy generation and fractality in the dry friction of polished surfaces,”
    Entropy, vol. 12, no. 3, pp. 480–489, Mar. 11, 2010, issn: 1099-4300. doi: 10.3390/
    e12030480. [Online]. Available: http://www.mdpi.com/1099- 4300/12/3/480
    (visited on 02/15/2024).
    [105] L. Ruff and H. Kanamori, “Seismic coupling and uncoupling at subduction zones,”
    Tectonophysics, vol. 99, no. 2-4, pp. 99–117, Dec. 1983, issn: 00401951. doi:
    10.1016/0040- 1951(83)90097- 5. [Online]. Available: https://linkinghub.
    elsevier.com/retrieve/pii/0040195183900975 (visited on 02/15/2024).
    [106] J. B. Rundle, W. Klein, and S. Gross, “Dynamics of a traveling density wave
    model for earthquakes,” Physical Review Letters, vol. 76, no. 22, pp. 4285–4288,
    May 1996, issn: 1079-7114. doi: 10.1103/PhysRevLett.76.4285.
    [107] M. Ohnaka, “A constitutive scaling law and a unified comprehension for frictional
    slip failure, shear fracture of intact rock, and earthquake rupture,” Journal of
    Geophysical Research: Solid Earth, vol. 108, no. B2, 2003, issn: 2156-2202. doi:
    10.1029/2000JB000123.
    [108] K. Aki, “Characterization of barriers on an earthquake fault,” Journal of Geophysical
    Research: Solid Earth, vol. 84, no. B11, pp. 6140–6148, Oct. 1979, issn:
    2156-2202. doi: 10.1029/JB084iB11p06140.
    [109] A. S. Papageorgiou and K. Aki, “A specific barrier model for the quantitative description
    of inhomogeneous faulting and the prediction of strong ground motion. I.
    Description of the model,” Bulletin of the Seismological Society of America, vol. 73,
    no. 3, pp. 693–722, Jun. 1983, issn: 0037-1106. doi: 10.1785/BSSA0730030693.
    [110] K. Aki, “Asperities, barriers, characteristic earthquakes and strong motion prediction,”
    Journal of Geophysical Research: Solid Earth, 1984. doi: 10 . 1029 /
    JB089IB07P05867.
    [111] H. Kanamori and G. S. Stewart, “Seismological aspects of the Guatemala Earthquake
    of February 4, 1976,” Journal of Geophysical Research: Solid Earth, vol. 83,
    no. B7, pp. 3427–3434, 1978, issn: 2156-2202. doi: 10.1029/JB083iB07p03427.
    [112] J. D. Byerlee, “Frictional characteristics of granite under high confining pressure,”
    Journal of Geophysical Research (1896-1977), vol. 72, no. 14, pp. 3639–3648, 1967,
    issn: 2156-2202. doi: 10.1029/JZ072i014p03639.
    [113] R. Costamagna, J. Renner, and O. T. Bruhns, “Relationship between fracture and
    friction for brittle rocks,” Mechanics of Materials, vol. 39, no. 4, pp. 291–301, Apr.
    2007, issn: 0167-6636. doi: 10.1016/j.mechmat.2006.06.001.
    [114] R. Burridge and L. Knopoff, “Model and theoretical seismicity,” Bulletin of the
    Seismological Society of America, vol. 57, no. 3, pp. 341–371, Jun. 1967, issn:
    0037-1106.
    [115] S. J. Gross, “Traveling wave and rough fault earthquake models: Illuminating the
    relationship between slip deficit and event frequency statistics,” in Geocomplexity
    and the Physics of Earthquakes, J. B. Rundle, D. L. Turcotte, and W. Klein,
    Eds., American Geophysical Union, 2000, pp. 73–82, isbn: 978-1-118-66837-5. doi:
    10.1029/GM120p0073.
    [116] C. C. de Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A new model for control
    of systems with friction,” IEEE Transactions on Automatic Control, vol. 40, no. 3,
    pp. 419–425, Mar. 1995, issn: 0018-9286. doi: 10.1109/9.376053.
    [117] J. Liang, S. Fillmore, and O. Ma, “An extended bristle friction force model with
    experimental validation,” Mechanism and Machine Theory, vol. 56, pp. 123–137,
    Oct. 2012, issn: 0094-114X. doi: 10.1016/j.mechmachtheory.2012.06.002.
    [118] S. Saltiel, B. P. Bonner, T. Mittal, B. Delbridge, and J. B. Ajo-Franklin, “Experimental
    evidence for dynamic friction on rock fractures from frequency-dependent
    nonlinear hysteresis and harmonic generation,” Journal of Geophysical Research:
    Solid Earth, vol. 122, no. 7, pp. 4982–4999, Jul. 2017, issn: 2169-9313. doi: 10.
    1002/2017JB014219.
    [119] J. F. Labuz and A. Zang, “Mohr–Coulomb failure criterion,” Rock Mechanics and
    Rock Engineering, vol. 45, no. 6, pp. 975–979, Nov. 2012, issn: 1434-453X. doi:
    10.1007/s00603-012-0281-7.
    [120] A. Zang and O. Stephansson, “Rock fracture criteria,” in Stress Field of the Earth’s
    Crust, A. Zang and O. Stephansson, Eds., Dordrecht: Springer Netherlands, 2010,
    pp. 37–62, isbn: 978-1-4020-8444-7. doi: 10.1007/978-1-4020-8444-7_3.
    [121] M. Marder and J. Fineberg, “How things break,” Physics Today, vol. 49, no. 9,
    pp. 24–29, Sep. 1, 1996, issn: 0031-9228. doi: 10 . 1063 / 1 . 881515. [Online].
    Available: https://physicstoday.scitation.org/doi/10.1063/1.881515
    (visited on 08/17/2021).
    [122] J. .-. Eckmann, “Roads to turbulence in dissipative dynamical systems,” Reviews
    of Modern Physics, vol. 53, no. 4, pp. 643–654, Oct. 1981. doi: 10.1103/
    RevModPhys.53.643.
    [123] J. Nussbaum and A. Ruina, “A two degree-of-freedom earthquake model with
    static/dynamic friction,” pure and applied geophysics, vol. 125, no. 4, pp. 629–
    656, Jul. 1, 1987, issn: 1420-9136. doi: 10.1007/BF00879576. [Online]. Available:
    https://doi.org/10.1007/BF00879576 (visited on 02/27/2024).
    [124] J. Huang and D. L. Turcotte, “Chaotic seismic faulting with a mass-spring model
    and velocity-weakening friction,” pure and applied geophysics, vol. 138, no. 4,
    pp. 569–589, Dec. 1992, issn: 1420-9136. doi: 10.1007/BF00876339.
    [125] J. Huang and D. L. Turcotte, “Are earthquakes an example of deterministic
    chaos?” Geophysical Research Letters, vol. 17, no. 3, pp. 223–226, Mar. 1990,
    issn: 0094-8276. doi: 10.1029/GL017i003p00223.
    [126] N. G. Van Kampen, Stochastic processes in physics and chemistry. Elsevier, 1992,
    vol. 1, isbn: 0-08-057138-7.
    [127] R. Kubo, “The fluctuation-dissipation theorem,” Reports on Progress in Physics,
    vol. 29, pp. 255–284, Jan. 1966, issn: 0034-4885. doi: 10.1088/0034-4885/29/
    1/306.
    [128] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Academic Press, Jan.
    1970, isbn: 978-0-08-096090-6.
    [129] H. Risken, The Fokker-Planck equation: methods of solution and applications
    (Springer series in synergetics v. 18), 2nd ed. Berlin ; New York: Springer-Verlag,
    1989, isbn: 978-0-387-50498-8.
    [130] K. Jacobs, Stochastic processes for physicists: understanding noisy systems. Cambridge
    University Press, 2010, isbn: 1-139-48679-9.
    [131] S. Cyganowski, P. Kloeden, and J. Ombach, From Elementary Probability to
    Stochastic Differential Equations with MAPLE®. Springer Science & Business
    Media, 2001, isbn: 3-540-42666-3.
    [132] J. Byerlee, “Friction of rocks,” Pure Appl Geophys, vol. 116, no. 4, pp. 615–626,
    Jul. 1978, issn: 1420-9136. doi: 10.1007/BF00876528. [Online]. Available: https:
    //doi.org/10.1007/BF00876528 (visited on 10/28/2018).
    [133] B. Armstrong-Hélouvry, Control of Machines with Friction (The Springer International
    Series in Engineering and Computer Science). Springer US, 1991,
    isbn: 978-0-7923-9133-3. [Online]. Available: //www.springer.com/la/book/
    9780792391333 (visited on 11/27/2018).
    [134] H. Olsson, K. Åström, C. C. de Wit, M. Gäfvert, and P. Lischinsky, “Friction
    models and friction compensation,” Nov. 1997. [Online]. Available: http://catsfs.
    rpi.edu/~wenj/ECSE4962S04/astrom_friction.pdf.
    [135] C. Marone, “Laboratory-derived friction laws and their application to seismic
    faulting,” Annu Rev Earth Planet Sci, vol. 26, no. 1, pp. 643–696, 1998. doi:
    10.1146/annurev.earth.26.1.643. [Online]. Available: https://doi.org/10.
    1146/annurev.earth.26.1.643 (visited on 10/11/2018).
    [136] J. Fréne and T. Cicone, “SECTION 8.4 - Friction in lubricated contacts,” in
    Handbook of Materials Behavior Models, J. Lemaitre, Ed., Burlington: Academic
    Press, Jan. 2001, pp. 760–767, isbn: 978-0-12-443341-0. doi: 10 . 1016 / B978 -
    012443341-0/50076-4. [Online]. Available: http://www.sciencedirect.com/
    science/article/pii/B9780124433410500764 (visited on 11/22/2018).
    [137] C. C. de Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A new model for control
    of systems with friction,” IEEE Trans Autom Control, vol. 40, no. 3, pp. 419–425,
    Mar. 1995, issn: 0018-9286. doi: 10.1109/9.376053.
    [138] R. A. Fisher, “Theory of statistical estimation,” Math Proc Cambridge Philos Soc,
    vol. 22, no. 5, pp. 700–725, Jul. 1925, issn: 1469-8064, 0305-0041. doi: 10.1017/
    S0305004100009580. [Online]. Available: https://www.cambridge.org/core/
    journals/mathematical- proceedings- of- the- cambridge- philosophicalsociety/
    article/theory-of-statistical-estimation/7A05FB68C83B36C0E91D42C76AB177D4
    (visited on 12/18/2018).
    [139] B. R. Frieden, “Fisher information, disorder, and the equilibrium distributions of
    physics,” Phys Rev A, vol. 41, no. 8, pp. 4265–4276, Apr. 1990. doi: 10.1103/
    PhysRevA.41.4265. [Online]. Available: https://link.aps.org/doi/10.1103/
    PhysRevA.41.4265 (visited on 12/18/2018).
    [140] D. C. Marinescu and G. M. Marinescu, “CHAPTER 3 - Classical and quantum
    information theory,” in Classical and Quantum Information, D. C. Marinescu
    and G. M. Marinescu, Eds., Boston: Academic Press, Jan. 1, 2012, pp. 221–344,
    isbn: 978-0-12-383874-2. doi: 10.1016/B978- 0- 12- 383874- 2.00003- 5. [Online].
    Available: https : / / www . sciencedirect . com / science / article / pii /
    B9780123838742000035 (visited on 04/01/2024).
    [141] B. R. Frieden, Physics from Fisher Information: A Unification. Cambridge: Cambridge
    University Press, Dec. 1998. doi: 10.1017/CBO9780511622670. [Online].
    Available: /core/books/physics-from-fisher-information/EAD061980A31B012779A6BC5D7F93822
    (visited on 02/11/2019).
    [142] N. Grzywacz and H. Aleem, “Does amount of information support aesthetic values?”
    Frontiers in Neuroscience, vol. 16, p. 805 658, Mar. 1, 2022. doi: 10.3389/
    fnins.2022.805658.
    [143] L. Devroye, A course in density estimation. Birkhauser Boston Inc., 1987, isbn:
    0-8176-3365-0.
    [144] A. Janicki and A. Weron, “Simulation and chaotic behavior of alpha-stable stochastic
    processes,” Hugo Steinhaus Center, Wroclaw University of Technology, HSC
    Books, 1994. [Online]. Available: https://econpapers.repec.org/bookchap/
    wuuhsbook/hsbook9401.htm (visited on 12/18/2018).
    [145] L. Telesca and M. Lovallo, “On the performance of Fisher Information Measure
    and Shannon entropy estimators,” Physica A, vol. 484, pp. 569–576, 2017, issn:
    0378-4371.
    [146] A. B. Chelani, “Irregularity analysis of CO, NO2 and O3 concentrations at traffic,
    commercial and low activity sites in Delhi,” Stochastic environmental research and
    risk assessment, vol. 28, no. 4, pp. 921–925, 2014, issn: 1436-3240.
    [147] B. D. Fath, H. Cabezas, and C. W. Pawlowski, “Regime changes in ecological
    systems: An information theory approach,” J Theor Biol, vol. 222, no. 4, pp. 517–
    530, Jun. 2003, issn: 0022-5193.
    [148] M. Troudi, A. M. Alimi, and S. Saoudi, “Analytical plug-in method for kernel
    density estimator applied to genetic neutrality study,” EURASIP Journal on Advances
    in Signal Processing, vol. 2008, no. 1, p. 739 082, May 2008, issn: 1687-6180.
    doi: 10.1155/2008/739082. [Online]. Available: https://doi.org/10.1155/
    2008/739082 (visited on 05/14/2019).
    [149] V. C. Raykar and R. Duraiswami, “Fast optimal bandwidth selection for kernel
    density estimation,” in Proceedings of the 2006 SIAM International Conference
    on Data Mining, Society for Industrial and Applied Mathematics, Apr.
    2006, pp. 524–528, isbn: 978-0-89871-611-5 978-1-61197-276-4. doi: 10.1137/1.
    9781611972764 . 53. [Online]. Available: https : / / epubs . siam . org / doi / 10 .
    1137/1.9781611972764.53 (visited on 12/18/2018).
    [150] G. Di Toro, R. Han, T. Hirose, et al., “Fault lubrication during earthquakes,”
    Nature, vol. 471, no. 7339, pp. 494–498, 7339 Mar. 2011, issn: 1476-4687. doi: 10.
    1038/nature09838. [Online]. Available: https://www.nature.com/articles/
    nature09838 (visited on 01/18/2024).
    [151] K. Mizoguchi, T. Hirose, T. Shimamoto, and E. Fukuyama, “Reconstruction of
    seismic faulting by high-velocity friction experiments: An example of the 1995
    Kobe earthquake,” Geophysical Research Letters, vol. 34, no. 1, 2007, issn: 1944-
    8007. doi: 10.1029/2006GL027931. [Online]. Available: https://onlinelibrary.
    wiley.com/doi/abs/10.1029/2006GL027931 (visited on 01/21/2024).
    [152] A. Tsutsumi and T. Shimamoto, “High-velocity frictional properties of gabbro,”
    Geophysical Research Letters, vol. 24, no. 6, pp. 699–702, 1997, issn: 1944-8007.
    doi: 10.1029/97GL00503. [Online]. Available: https://onlinelibrary.wiley.
    com/doi/abs/10.1029/97GL00503 (visited on 01/21/2024).
    [153] E. Spagnuolo, O. Plümper, M. Violay, A. Cavallo, and G. Di Toro, “Fast-moving
    dislocations trigger flash weakening in carbonate-bearing faults during earthquakes,”
    Scientific Reports, vol. 5, no. 1, p. 16 112, 1 Nov. 10, 2015, issn: 2045-2322. doi:
    10.1038/srep16112. [Online]. Available: https://www.nature.com/articles/
    srep16112 (visited on 07/28/2023).
    [154] H. Kanamori and L. Rivera, “Energy partitioning during an earthquake,” pp. 3–
    13, 2006. doi: 10.1029/170GM03. [Online]. Available: https://onlinelibrary.
    wiley.com/doi/abs/10.1029/170GM03 (visited on 09/23/2021).
    [155] T.-H. Wu, C.-C. Chen, M. Lovallo, and L. Telesca, “Informational analysis of
    Langevin equation of friction in earthquake rupture processes,” Chaos: An Interdisciplinary
    Journal of Nonlinear Science, vol. 29, no. 10, p. 103 120, Oct. 1,
    2019, issn: 1054-1500. doi: 10 . 1063 / 1 . 5092552. [Online]. Available: https :
    //aip.scitation.org/doi/full/10.1063/1.5092552 (visited on 12/10/2019).
    [156] M. P. Zorzano, H. Mais, and L. Vazquez, “Numerical solution of two dimensional
    Fokker—Planck equations,” Applied Mathematics and Computation, vol. 98, no. 2,
    pp. 109–117, Feb. 1999, issn: 0096-3003. doi: 10.1016/S0096-3003(97)10161-8.
    [157] “Fundamentals,” in Nonlinear Fokker-Planck Equations: Fundamentals and Applications,
    ser. Springer Series in Synergetics, T. D. Frank, Ed., Berlin, Heidelberg:
    Springer, 2005, pp. 19–30, isbn: 978-3-540-26477-4. doi: 10.1007/3-540-26477-
    9_2. [Online]. Available: https://doi.org/10.1007/3-540-26477-9_2 (visited
    on 03/22/2020).
    [158] G. A. Pavliotis, “The Fokker–Planck equation,” in Stochastic Processes and Applications:
    Diffusion Processes, the Fokker-Planck and Langevin Equations, ser. Texts
    in Applied Mathematics, G. A. Pavliotis, Ed., New York, NY: Springer, 2014,
    pp. 87–137, isbn: 978-1-4939-1323-7. doi: 10 . 1007 / 978 - 1 - 4939 - 1323 - 7 _ 4.
    [Online]. Available: https://doi.org/10.1007/978-1-4939-1323-7_4 (visited
    on 03/22/2020).
    [159] K. K. S. Thingbaijam and P. M. Mai, “Evidence for truncated exponential probability
    distribution of earthquake slip,” Bulletin of the Seismological Society of
    America, vol. 106 (4), no. 4, pp. 1802–1816, Jul. 2016, issn: 0037-1106, 1943-3573.
    doi: 10.1785/0120150291.
    [160] H. Kanamori and E. E. Brodsky, “The physics of earthquakes,” Reports on Progress
    in Physics, vol. 67, no. 8, p. 1429, 2004, issn: 0034-4885. doi: 10.1088/0034-
    4885/67/8/R03. [Online]. Available: http://stacks.iop.org/0034-4885/67/
    i=8/a=R03 (visited on 07/13/2017).
    [161] S. Ide, “A Brownian walk model for slow earthquakes,” Geophysical Research
    Letters, vol. 35, no. 17, p. L17301, Sep. 2008, issn: 1944-8007. doi: 10.1029/
    2008GL034821.
    [162] S. Cyganowski, P. Kloeden, and J. Ombach, From elementary probability to stochastic
    differential equations with MAPLE®. Springer Science & Business Media, 2001,
    isbn: 3-540-42666-3.
    [163] H.-J. Chen, T.-H. Wu, C.-C. Chen, L.-W. Kuo, L. Telesca, and M. Lovallo, “Informational
    analysis of experimental seismic slip rate history and implication for
    fault ruptures,” Preprint. Submitted for publication., 2024.
    [164] L. R. Moreno-Torres, A. Gomez-Vieyra, M. Lovallo, A. Ramírez-Rojas, and L.
    Telesca, “Investigating the interaction between rough surfaces by using the Fisher–
    Shannon method: Implications on interaction between tectonic plates,” Physica A,
    2018, issn: 0378-4371.
    [165] M. Nosonovsky, “Entropy in tribology: In the search for applications,” Entropy,
    vol. 12, no. 6, pp. 1345–1390, Jun. 2010. doi: 10.3390/e12061345. [Online]. Available:
    https://www.mdpi.com/1099-4300/12/6/1345 (visited on 12/18/2018).
    [166] G. W. Drake, Entropy | definition & equation | Britannica, in Mar. 28, 2024.
    [Online]. Available: https://www.britannica.com/science/entropy-physics
    (visited on 04/13/2024).
    [167] K. Aki, “Scaling law of seismic spectrum,” Journal of Geophysical Research (1896-
    1977), vol. 72, no. 4, pp. 1217–1231, 1967, issn: 2156-2202. doi: 10 . 1029 /
    JZ072i004p01217. [Online]. Available: https://agupubs.onlinelibrary.wiley.
    com/doi/abs/10.1029/JZ072i004p01217 (visited on 07/13/2020).
    [168] T. Utsu, “44 - Relationships between magnitude scales,” in International Geophysics,
    ser. International Handbook of Earthquake and Engineering Seismology,
    Part A, W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger,
    Eds., vol. 81, Academic Press, Jan. 1, 2002, pp. 733–746. doi: 10.1016/S0074-
    6142(02 ) 80247 - 9. [Online]. Available: https : / / www . sciencedirect . com /
    science/article/pii/S0074614202802479 (visited on 07/17/2024).
    [169] H. Kanamori, “Magnitude scale and quantification of earthquakes,” Tectonophysics,
    Quantification of Earthquakes, vol. 93, no. 3, pp. 185–199, Apr. 10, 1983, issn:
    0040-1951. doi: 10.1016/0040- 1951(83)90273- 1. [Online]. Available: https:
    //www.sciencedirect.com/science/article/pii/0040195183902731 (visited
    on 07/17/2024).
    [170] N. A. Haskell, “Total energy and energy spectral density of elastic wave radiation
    from propagating faults. Part II. A statistical source model,” Bulletin of the
    Seismological Society of America, vol. 56, no. 1, pp. 125–140, Feb. 1, 1966, issn:
    0037-1106. [Online]. Available: https://pubs.geoscienceworld.org/ssa/bssa/
    article-abstract/56/1/125/101428/Total-energy-and-energy-spectraldensity-
    of (visited on 07/24/2020).
    [171] P. M. Shearer, Introduction to Seismology, 2nd ed. Cambridge: Cambridge University
    Press, 2009. doi: 10.1017/CBO9780511841552. [Online]. Available: https://
    www.cambridge.org/core/books/introduction-to-seismology/D2CE729616AD16EFA417BE683273B562
    (visited on 07/19/2024).
    [172] J. Boatwright, “A spectral theory for circular seismic sources; simple estimates
    of source dimension, dynamic stress drop, and radiated seismic energy,” Bulletin
    of the Seismological Society of America, vol. 70, no. 1, pp. 1–27, Feb. 1, 1980,
    issn: 0037-1106. [Online]. Available: https://pubs.geoscienceworld.org/ssa/
    bssa/article/70/1/1/101951/A-spectral-theory-for-circular-seismicsources
    (visited on 07/19/2020).
    [173] M. Furumoto and I. Nakanishi, “Source times and scaling relations of large earthquakes,”
    Journal of Geophysical Research: Solid Earth, vol. 88, no. B3, pp. 2191–
    2198, 1983, issn: 2156-2202. doi: 10.1029/JB088iB03p02191.
    [174] Y. Tanioka and L. J. Ruff, “Source time functions,” Seismological Research Letters,
    vol. 68, no. 3, pp. 386–400, May 1997, issn: 0895-0695. doi: 10.1785/gssrl.68.
    3.386.
    [175] H. Houston, “Influence of depth, focal mechanism, and tectonic setting on the
    shape and duration of earthquake source time functions,” Journal of Geophysical
    Research: Solid Earth, vol. 106, no. B6, pp. 11 137–11 150, 2001, issn: 2156-2202.
    doi: 10.1029/2000JB900468.
    [176] S. Michel, A. Gualandi, and J.-P. Avouac, “Similar scaling laws for earthquakes
    and Cascadia slow-slip events,” Nature, vol. 574, no. 7779, pp. 522–526, Oct. 2019,
    issn: 1476-4687. doi: 10.1038/s41586-019-1673-6.
    [177] S. Ide, G. C. Beroza, D. R. Shelly, and T. Uchide, “A scaling law for slow earthquakes,”
    Nature, vol. 447, no. 7140, pp. 76–79, May 2007, issn: 0028-0836. doi:
    10.1038/nature05780.
    [178] A. C. Aguiar, T. I. Melbourne, and C. W. Scrivner, “Moment release rate of
    Cascadia tremor constrained by GPS,” Journal of Geophysical Research: Solid
    Earth, vol. 114, no. B7, 2009, issn: 2156-2202. doi: 10.1029/2008JB005909.
    [179] H. Gao, D. A. Schmidt, and R. J. Weldon, “Scaling relationships of source parameters
    for slow slip events,” Bulletin of the Seismological Society of America, vol. 102,
    no. 1, pp. 352–360, Feb. 2012, issn: 0037-1106. doi: 10.1785/0120110096.
    [180] J. Gomberg, A. Wech, K. Creager, K. Obara, and D. Agnew, “Reconsidering
    earthquake scaling,” Geophysical Research Letters, vol. 43, no. 12, pp. 6243–6251,
    2016, issn: 1944-8007. doi: 10.1002/2016GL069967.
    [181] J.-H. Wang, “A review on scaling of earthquake faults,” Terrestrial, Atmospheric
    and Oceanic Sciences, vol. 29, no. 6, pp. 589–610, 2018, issn: 1017-0839. doi:
    10.3319/TAO.2018.08.19.01. [Online]. Available: http://tao.cgu.org.tw/
    index.php/articles/archive/geophysics/item/1612 (visited on 06/08/2024).
    [182] S. Ide, K. Imanishi, Y. Yoshida, G. C. Beroza, and D. R. Shelly, “Bridging the
    gap between seismically and geodetically detected slow earthquakes,” Geophysical
    Research Letters, vol. 35, no. 10, May 2008, issn: 0094-8276. doi: 10 . 1029 /
    2008GL034014.
    [183] W. B. Frank, B. Rousset, C. Lasserre, and M. Campillo, “Revealing the cluster
    of slow transients behind a large slow slip event,” Science Advances, vol. 4, no. 5,
    eaat0661, May 2018, issn: 2375-2548. doi: 10.1126/sciadv.aat0661.
    [184] K. Thøgersen, H. A. Sveinsson, J. Scheibert, F. Renard, and A. Malthe-Sørenssen,
    “The moment duration scaling relation for slow rupture arises from transient rupture
    speeds,” Geophysical Research Letters, vol. 46, no. 22, pp. 12 805–12 814, 2019,
    issn: 1944-8007. doi: 10.1029/2019GL084436.
    [185] K. Aki, “Earthquake mechanism,” in Developments in Geotectonics, ser. The Upper
    Mantle, A. R. Ritsema, Ed., vol. 4, Elsevier, Jan. 1972, pp. 423–446. doi:
    10.1016/B978-0-444-41015-3.50029-X.
    [186] Y. Iio, “Frictional coefficient on faults in a seismogenic region inferred from earthquake
    mechanism solutions,” Journal of Geophysical Research: Solid Earth, vol. 102,
    no. B3, pp. 5403–5412, 1997, issn: 2156-2202. doi: 10.1029/96JB03593. [Online].
    Available: https://onlinelibrary.wiley.com/doi/abs/10.1029/96JB03593
    (visited on 06/21/2024).
    [187] Z. Reches, G. Baer, and Y. Hatzor, “Constraints on the strength of the upper
    crust from stress inversion of fault slip data,” Journal of Geophysical Research:
    Solid Earth, vol. 97, no. B9, pp. 12 481–12 493, 1992, issn: 2156-2202. doi: 10.
    1029/90JB02258. [Online]. Available: https://onlinelibrary.wiley.com/doi/
    abs/10.1029/90JB02258 (visited on 06/21/2024).
    [188] S. Ji, S. Sun, Q. Wang, and D. Marcotte, “Lamé parameters of common rocks
    in the Earth’s crust and upper mantle,” Journal of Geophysical Research: Solid
    Earth, vol. 115, no. B6, 2009JB007134, Jun. 2010, issn: 0148-0227. doi: 10.1029/
    2009JB007134. [Online]. Available: https://agupubs.onlinelibrary.wiley.
    com/doi/10.1029/2009JB007134 (visited on 06/21/2024).
    [189] J. Von Plato, “Boltzmann’s ergodic hypothesis,” Archive for History of Exact Sciences,
    vol. 42, no. 1, pp. 71–89, 1991, issn: 0003-9519. doi: 10.1007/BF00384333.
    [190] K. Aki, “Scaling law of earthquake source time‐function,” Geophysical Journal
    International, vol. 31, pp. 3–25, 1‐3 1972, issn: 1365-246X.
    [191] P. S. Dysart, J. A. Snoke, and I. S. Sacks, “Source parameters and scaling relations
    for small earthquakes in the Matsushiro region, southwest Honshu, Japan,” Bulletin
    of the Seismological Society of America, vol. 78, no. 2, pp. 571–589, Apr. 1,
    1988, issn: 0037-1106. doi: 10.1785/BSSA0780020571. [Online]. Available: https:
    //doi.org/10.1785/BSSA0780020571 (visited on 07/16/2024).
    [192] I. Selwyn Sacks and P. A. Rydelek, “Earthquake “Quanta”as an explanation
    for observed magnitudes and stress drops,” Bulletin of the Seismological Society
    of America, vol. 85, no. 3, pp. 808–813, Jun. 1, 1995, issn: 0037-1106. doi:
    10 . 1785 / BSSA0850030808. [Online]. Available: https : / / doi . org / 10 . 1785 /
    BSSA0850030808 (visited on 07/16/2024).
    [193] Z. L. Wu, Y. T. Chen, and S. G. Kim, “Physical significance of earthquake quanta,”
    Bulletin of the Seismological Society of America, vol. 86, no. 5, pp. 1623–1626, Oct.
    1996, issn: 0037-1106.
    [194] D. P. Hess and A. Soom, “Friction at a lubricated line contact operating at oscillating
    sliding velocities,” J Tribol, vol. 112, no. 1, pp. 147–152, Jan. 1990, issn:
    0742-4787. doi: 10.1115/1.2920220. [Online]. Available: http://dx.doi.org/
    10.1115/1.2920220 (visited on 05/07/2019).
    [195] E. E. Brodsky and H. Kanamori, “Elastohydrodynamic lubrication of faults,”
    Journal of Geophysical Research: Solid Earth, vol. 106, no. B8, pp. 16 357–16 374,
    2001, issn: 2156-2202. doi: 10.1029/2001JB000430. [Online]. Available: https:
    //agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JB000430 (visited
    on 05/07/2019).
    [196] D. Kilb and J. Gomberg, “The initial subevent of the 1994 Northridge, California,
    earthquake: Is earthquake size predictable?” J Seismolog, vol. 3, no. 4, pp. 409–420,
    Oct. 1999, issn: 1573-157X. doi: 10.1023/A:1009890329925. [Online]. Available:
    https://doi.org/10.1023/A:1009890329925 (visited on 05/06/2019).
    [197] W. L. Ellsworth and G. C. Beroza, “Observation of the seismic nucleation phase in
    the Ridgecrest, California, Earthquake sequence,” Geophys Res Lett, vol. 25, no. 3,
    pp. 401–404, 1998, issn: 1944-8007. doi: 10.1029/97GL53700. [Online]. Available:
    https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97GL53700
    (visited on 05/06/2019).
    [198] J. N. Brune, “Implications of earthquake triggering and rupture propagation for
    earthquake prediction based on premonitory phenomena,” Journal of Geophysical
    Research: Solid Earth, vol. 84, no. B5, pp. 2195–2198, 1979, issn: 2156-
    2202. doi: 10.1029/JB084iB05p02195. [Online]. Available: https://agupubs.
    onlinelibrary.wiley.com/doi/abs/10.1029/JB084iB05p02195 (visited on
    05/06/2019).
    [199] E. L. Olson and R. M. Allen, “The deterministic nature of earthquake rupture,”
    Nature, vol. 438, no. 7065, pp. 212–215, Nov. 2005, issn: 0028-0836, 1476-4687.
    doi: 10 . 1038 / nature04214. [Online]. Available: http : / / www . nature . com /
    articles/nature04214 (visited on 05/02/2019).
    [200] Y.-M. Wu and L. Zhao, “Magnitude estimation using the first three seconds Pwave
    amplitude in earthquake early warning,” Geophys Res Lett, vol. 33, no. 16,
    2006, issn: 1944-8007. doi: 10.1029/2006GL026871. [Online]. Available: https:
    / / agupubs . onlinelibrary . wiley . com / doi / abs / 10 . 1029 / 2006GL026871
    (visited on 05/03/2019).

    QR CODE
    :::