跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥文
Yen-Wen Chen
論文名稱: 喬登方塊和矩陣的張量積之數值域半徑
Numerical Radii for Tensor Products of Jordan Blocks and Matrices
指導教授: 高華隆
Hwa-Long Gau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 24
中文關鍵詞: 數值域張量積喬登方塊
外文關鍵詞: Numerical radius, Tensor product, Jordan block
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們去考慮Jm與矩陣A的張量積的數值域半徑和矩陣A的數值域半徑之間的關係,其中Jm是一個m乘m的喬登方塊。針對m等於2和3,對於Jm與矩陣A的張量積的數值域半徑等於矩陣A的數值域半徑時,得到不同的充分必要條件。我們證明J2與矩陣A的張量積的數值域半徑等於矩陣A的數值域半徑的充分必要條件是矩陣A有一個2乘2的壓縮矩陣B使得B與A的數值域相同且A的數值域是一個以圓點為圓心的圓盤。而且,我們也去證明J3與矩陣A的張量積的數值域半徑等於矩陣A的數值域半徑的充分必要條件是矩陣A有一個3乘3的壓縮矩陣B使得B與A的數值域相同且矩陣A 的數值域是一個以圓點為圓心的圓盤。接下來,保證矩陣A 的數值域是一個圓盤,特別去考慮kA等於2與3時充分必要的關係,其中A經過無數個正交基底變換得到不同大小的矩陣,找到最小的矩陣B使得B與A的數值域相同,這個最小矩陣的大小,定義為kA。若矩陣A 是aij所組成的4 乘4 矩陣,其中aij代表第i列第j行位置上的元素,則上述的這些條件會適用於矩陣A。


    In this thesis, we consider the relations between the numerical radius of Jm ⊗ A and A, where Jm is the m-by-m Jordan block.We obtain various conditions, necessary or sucient, for w(Jm ⊗ A) = w(A) to hold for m = 2; 3. We show that w(J2 ⊗ A) = w(A) if and only if A has a 2-by-2 com-
    pression B such that W(B) = W(A) and W(A) is a circular disc centered at the origin. Moreover, we also show that w(J3 ⊗ A) = w(A) if and only if A has a 3-by-3 compression B such that W(B) = W(A) and W(A) is a circular disc centered at the origin. Next, assume that W(A) is a circular disc centered at the origin, we give the necessary and sucient conditions for kA = 2 and kA = 3, respectively, where
    kA = min{k ≥ 1 : A has a k × k compression B such that W(B) = W(A)}. Moreover,if A = [aij], i,j = 1,2,3,4, those conditions will be given in terms of aij 's.

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Basic Properties of Numerical Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2.2 Circular Numerical Ranges of 22 and 33 Matrices . . . . . . . . . . . . . . . 5 2.3 Numerical Radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3. Black shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4. 4  4 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    [1] C.-H. Chang, H.-L. Gau, K.-Z. Wang, Equality of higher-rank numerical ranges
    of matrices, Linear Multilinear Algebra, 62 (2014), 626{638.
    [2] W.-S. Cheung, C.-K. Li, Elementary proofs for some results on the circular
    symmetry of the numerical range, Linear Algebra Appl., 61 (2013), 596{602.
    [3] M.-T. Chien, B.-S. Tam, Circularity of the numerical nange, Linear Algebra
    Appl., 201 (1994), 113{133.
    [4] H.-L. Gau, K.-Z. Wang, P. Y. Wu, Numerical radii for tensor prod-
    ucts of matrices, Linear Multilinear Algebra, (2014), to appear.
    http://dx.doi.org/10.1080/03081087.2013.839669
    [5] K. E. Gustafson, D. K. M. Rao, Numerical Range, the the Field of Values of
    Linear Operators and Matrices, Springer, New York, 1997.
    [6] P. R. Halmos, A Hilbert Space Problem Book, Springer, New York, 1982.
    [7] D. S. Keeler, L. Rodman, I. M. Spitkovsl, The numerical range of 3 x 3 matrices,
    Linear Algebra Appl., 252 (1997), 115{139.
    [8] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis. Cambridge, Cambrige
    University Press, 1991.
    [9] P. Y. Wu, Numeaical ranges as circular discs, Appl. Math. Lett., 24 (2011), 2115{
    2117.
    24

    QR CODE
    :::