| 研究生: |
陳世欽 Sh-Qing Cheng |
|---|---|
| 論文名稱: |
濺鍍橫向式磁記錄媒體中等向性與異向性媒體磁記錄性能之研究 |
| 指導教授: |
李勝隆
Sheng-long Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
械刻紋與不經機械刻紋,探討不同種子層對橫向式磁記錄媒體磁性
質之影響。根據研究結果得知,以NiP 為種子層且經圓周方向機械
刻紋之磁記錄媒體之Mr 最高,而以NiAl 為種子層之磁記錄媒體,
不論是否有經過機械刻紋,均不會形成異向性媒體。此外,我們以
NiP 作為種子層,得知有機械刻紋的異向性媒體之磁記錄性能比未
經機械刻紋的等向性媒體佳。而磁性層合金元素添加、鉻合金底層
厚度、非磁性緩衝層厚度、磁性層厚度均會影響磁記錄媒體之記錄
性能。由實驗結果得知,在磁性層中合金元素鉻的添加會提高訊號
雜訊比,但是會降低磁性熱穩定性;鉑元素的添加則會提高訊號雜
訊比,同時亦會提升磁性熱穩定性;鉭元素的添加會提高磁性熱穩
定性。而在鉻合金底層與磁性鈷合金層中間濺鍍一層很薄之非磁性
鈷合金緩衝層,當厚度在5Å 以上時,會使訊號雜訊比提高1.5dB 左
右。訊號雜訊比會隨磁性鈷合金層或鉻合金底層厚度增加而降低,
而磁性熱穩定性則會隨磁性層或底層厚度增加而增加。
1. 張志高, “橫向式高密度磁記錄媒體的原理與極限”, 中華民國磁性技術協會
會訊, 第二十六期, pp. 11-18, 2000.
2. J. M. Enos, Data Storage, Vol. 7, No. 6, 2000.
3. 張志高,”簡介橫向式磁記錄媒體”,材料會訊, 第六卷, 第三期, 1999.
4. T. C. Arnoldussen, L. L. Nunnelley, “Noise in Digital Magnetic Recording”,
World Scientific, pp.7-64, 1992.
5. Zhu, J. –G. and H. N. Bertram, “Micromagnetic Studies of Thin Metallic Films”,
J. Appl. Phys., Vol. 63, pp. 3248-3253, (1988).
6. Zhu, J. –G. and H. N. Bertram, “Recording and Transition Noise Simulations in
Thin Film Media,” IEEE Trans. Magn., MAG-24, pp. 2706-2708, 1988.
7. E. S. Murdick, R. F. Simmons and R. Davidson, “Roadmap of 10Gbit/in2
Media,” IEEE Trans. Magn., MAG-28, pp. 3078-3083, 1992.
8. M. P. Sharrock, “Time Dependence of Switching Fields in Magnetic Recording
Media”, J. Appl. Phys., Vol.76, No. 10, pp.6413-6418, 1994.
9. F. Bolzoni, F. Leccabue, R. Panizieri, and L. Pareti, “Magnetocrystalline
anisotropy and phase transformation in Co-Pt alloy,” IEEE Trans. Magn., MAG-
20, pp. 1625-1627, 1984.
10. N. Inaba, Y. Uesaka, and M. Futamoto, “Comparison Between Different
Methods Of Determining Anisotropy Constants Of Thin Film Media,” IEEE
Trans. Magn., MAG-35, pp. 2670, 1999.
11. Y. Yahisa, K. Kimoto, K. usami, Y. Matsuda, J. Inagaki, K. Furusawa, and S.
Narishige, IEEE Trans. Magn., MAG-31, pp. 2836-2838, 1995.
12. E. Teng, N. Ballard, “Anisotropy Induced Signal Waveform Modulation of DC
Magnetron Sputtered Thin Film Disks”, IEEE Trans. Magn., MAG-22, No. 5,
pp. 579-581, 1986.
13. T. Ohno, Y. Shiroishi, S. Hishiyama, H. Suzuki and Y. Matsuda, “Modulation
and Crystallographic Orientation of Sputtered CoNi/Cr Disks for Longitudinal
Recording”, IEEE Trans. Magn., MAG-23, No. 5, pp. 2809-2811, 1987.
14. M. R. Kim, S. Guruswamy, and K. E. Johnson, “Microstructural Origin of inplane
Magnetic Anisotropy in Magnetron in-line Sputtered CoPtCr Thin-Film
64
Disks”, J. Appl. Phys., Vol. 74, pp. 4643-4650, 1993.
15. M. Mirzamaani, K. E. Johnson, D. Edmonson, P. Ivett, and M. Russak,
“Orientation Ratio of Sputtered Thin-Film Disks”, J. Appl. Phys., Vol. 67, pp.
4695-4697, 1990.
16. T. P. Nolan, R. Sinclair, R. Ranjan, and T. Yamashita, “Crystallographic
Orientation of Textured CoCrTa/Cr Sputtered Thin Film Media for Longitudinal
Recording”, J. Appl. Phys., Vol. 73, pp. 5117-5124, 1993.
17. M. F. Doerner, P. W. Wang, S. M. Mirzamaani, D. S. Parker, and A. C. Wall,
“Chromium Underlayer Effects in Longitudinal Magnetic Recording”, Mat. Res.
Soc. Symp. Proc., Vol. 232, pp. 27-33, 1991.
18. A. Kawamoto and F. Hikami, “Magnetic Anisotropy of Sputtered Media Induced
by Textured Substrate”, J. Appl. Phys., Vol. 69, pp. 5151-5153, 1991.
19. R. Nishikawa, T. Hikosaka, K. Igarashi and M. Kanamaru, “Texture-Induced
Magnetic Anisotropy of CoPt Films”, IEEE Trans. Magn., Vol.25, pp. 3890-3892,
1989.
20. J. A. Aboaf, S. R. Herd, E. Klokholm, “Magnetic Properties and Structure of
Cobalt- Platinum Thin Films”, IEEE Trans. Magn., Vol. 19, No. 4, pp. 1514-
1519, 1983.
21. K. E. Johnson, M. Mirzamaani, and M. F. Doerner, “In Plane Anisotropy in
Thin-Film Media: Physical Origins of Orientation Ratio (Invited)”, IEEE Trans.
Magn., MAG-31, No. 6, pp. 2721-2727, 1995.
22. C. H. Hee, J. P. Wang, H. Gong, T. S. Low, “Effect of Orientation Ratio on
Recording Performance for Longitudinal Thin Film Media”, IEEE Trans. Magn.,
MAG-36, No. 5, pp. 2291-2293, 2000.
23. J. J. K. Chang, “Fabrication and Characterization of Low Noise Longitudinal
Recording Media on Glass Ceramic Substrates”, Ph. D. Thesis in MSE, Stanford
University, 1997.
24. Alexander Taratorin, Characterization of Magnetic Recording Systems, Chapter1,
Guzik Technical Enterprises, 1996.
25. H. Neal Bertram, Theory of Magnetic Recording, Cambridge University Press,
1994.
26. M. L. Williams and R. L. Comstock, “An Analytical Model of the Write Process
in Digital Magnetic Recording”, 17th annu, AIP Conf. Prod., 5, pp. 738-742,
1971.
65
27. H. N. Bertram, “Fundamentals of the Magnetic Recording Process,” Proc.
IEEEE, 74 (11), pp. 1494-1512.
28. H. Neal Bertram, Theory of Magnetic Recording, pp.161-164, Cambridge
University Press, 1994.
29. H. Neal Bertram, Theory of Magnetic Recording, pp. 245-260, Cambridge
University Press, 1994.
30. Alexander Taratorin, Characterization of Magnetic Recording Systems, Chapter2
and 3, Guzik Technical Enterprises, 1996.
31. E. M. Williams, “Recording Systems Considerations of Noise and Interference”,
Chapter7, Noise in Digital Magnetic Recording by T. C. Arnoldussen and L. L.
Nunnelley, World Scientific, 1992.
32. T. Chen, “The Magnetic Properties of High-coecivity Metallic Thin Films and
Their Effects on the Limit of Packing Density in Digital Recording”, IEEE trans.
Magn., MAG-17, pp. 1181-1191, 1981.
33. E. S. Murdick, R. F. Simmons and R. Davidson, IEEE Trans. Magn., MAG-28,
pp. 3078, 1992.
34. E. S. Murdock, “Measured Noise In The Thin Film Media”, Chapter3, Noise in
Digital Magnetic Recording by T. C. Arnoldussen and L. L. Nunnelley, World
Scientific, 1992.
35. S. Chikazumi, Physics of Magnetism, J. Wiley, New York, 1964.
36. 陳信安, “磊晶NiFe (111) / NiFeMn 中應力引發交換異向之研究”, 國立清華
大學材料工程研究所, 1999.
37. B. D. Cullity, Introduction to Magnetic Materials, pp. 334-341, Addison-Wesley
Pubishing Company, 1972.
38. 汪建民, “材料分析”, 中國材料科學學會, 新竹市, 1998.
39. 林樹均, 葉均蔚, 劉增豐, 李勝隆, “材料工程實驗與原理”, 全華科技圖書,
台北市, 1980.
40. M. Mirzamaani, X. Bian, M. F. Doerner, J. Li, M. Parker, “Recording
Performance of Thin Film With Various Crystallographic Preferred Orientations
on Glass Substrates”, IEEE Trans. Magn., Vol. 34, No. 4, pp. 1588-1590, 1998.
41. N. Inaba, Y. Uesaka, and M. Futamoto, “Compositional and Temperature
Dependence of Basic Magnetic Properties of CoCr-Alloy Thin Films”, IEEE
Trans. Magn., Vol. 36, No. 5, pp. 54-60, 1992.
66
42. C. R. Paik, I. Suzuki, N. Tani, M. Ishikawa, Y. Ota, K. Nakamura, “Magnetic
Properties and Noise Characteristics of High Coercivity CoCrPtB/Cr Media”,
IEEE Trans. Magn., Vol.28, No.5, pp.3084~3086, 1992.
43. N. Mahvan, A. M. Zeltser, D. N. Lambeth, D. E. Laughlin and M. H. Kryder,
“Microstructure and Magnetic Properties of Thin-Film Co-Ni-Pt for
Longitudinal Recording”, IEEE Trans. Magn., Vol. 26, No.5, pp. 2277-2279,
1990.
44. Y. Kubota, L. Folks, and E. E. Marinero, “Intergrain Magnetic Coupling and
Microstructure in CoPtCr, CoPtCrTa, and CoPtCrB Alloys”, J. Appl. Phys., Vol.
84, No. 11, pp. 6202-6207, 1998.
45. K. E. Johnson, P. R. Lvett, D. R. Timmons, M. Mirzamaani, S. E. Lambert, and
T. Yogi, “The Effect of Cr Underlayer Thickness on Magnetic and Structural
Properties of CoPtCr Thin Films”, J. Appl. Phys., Vol. 67, No. 9, pp. 4686-4688,
1990.
46. L. Zhang, B. B. Lal, M. A. Russak, M. Bartholomeusz, and M. Tsai, “Thermal
Stability and Recording Characteristics of Thin Film Media with a CoCr Based
Non-Magnetic Interlayer”, IEEE Trans. Magn., Vol. 35, No. 5, pp. 2649-2651,
1999.
47. S. Ohkijima, M. Oka, H. Murayama, “Effect of CoCr Interlayer on Longitudinal
Recording”, IEEE Trans. Magn., Vol. 33, No. 5, pp. 2944-2946, 1997.