| 研究生: |
王立言 Li-Yan Wang |
|---|---|
| 論文名稱: |
微小化倍頻壓抑直交分合波器之研製 Miniature Microstrip Harmonic-Suppressed Quadrature Hybrids |
| 指導教授: |
凃文化
Wen-Hua Tu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 倍頻諧波壓抑 、直交分合波器 、微小化 |
| 外文關鍵詞: | harmonic suppression, miniature, quadrature hybrid |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中提出了具有倍頻諧波壓抑效果的微小化直交(90°)分合波器,和傳統的直交分合波器比較,文中所設計之直交分合波器具有較小面積及倍頻諧波壓抑的優點,本論文中提出針對三倍諧波壓抑和針對三倍及五倍諧波壓抑微小化直交分合波器,所使用方法為分別以T字型及十字架型的等效傳輸線來替代原本四分之一波長傳輸線,等效傳輸線在基頻時和傳統傳輸線響應相同,在特定諧波時會有帶拒濾波器的效果進而達到倍頻諧波壓抑,此外三倍諧波壓抑微小化直交分合波器在面積微小化的最佳化過程後較傳統直交分合波器減少約56%,而三倍及五倍諧波壓抑微小化直交分合波器在面積微小的最佳化過程後較傳統直交分合波器減少約24%的面積。
In this study, miniature quadrature hybrids with harmonic suppression are presented. In comparison to the conventional hybrids, the proposed ones achieve two features: compactness and harmonic suppression. Two hybrids, one with third harmonic suppression and the other with third and fifth harmonics suppression, are designed, fabricated, and measured. T-shaped or cross-shaped equivalent lines are used to replace the quarter-wavelength microstrip lines of the conventional hybrids. The equivalent lines achieve the same fundamental characteristic and act like bandstop filters at the particular harmonics to improve suppression. Moreover, after miniaturization, the proposed hybrid with third harmonic suppression achieves 56% size reduction as compared to the conventional hybrid as well as the proposed one with third and fifth harmonic suppression achieves 24% size reduction as compared to the conventional one. The miniaturization of the hybrid to decrease area of hybrids is also provided in the study.
[1] J. Butler and R. Lowe, ”Beam forming matrix simplifies design of electronically scanned antenna,” IEEE Trans. Appl. Supercond., vol. AC-9,no. 4, pp. 170-173, Apr. 1961.
[2] C. -H. Tseng, C. -J. Chen, and T. -H. Chu, ”A low-cost 60-GHz switched-beam patch antenna array with butler matrix,” IEEE Antennas and Wireless Propagation Lett., vol. 7, pp. 432-435, 2008.
[3] C. -W. Wang, T. -G. Ma, and C. -F. Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2792-2801, Dec. 2007.
[4] C. A. Balanis, Antenna Theory, 3rd ed. New York: Wiley, 2005.
[5] C. Collado, A. Grau, and F. D. Faviis, ”Dual-band planar quadrature hybrid with enhanced bandwidth response,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1 pp. 180-188, Jan. 2006.
[6] M. J. Park and B. Lee, “Dual-band planar quadrature hybrid with enhanced bandwidth response,” IEEE Microw. Wireless Compon. Lett., vol. 15, no.10, pp.655-657, Oct. 2005.
[7] F. -L. Wong and K. -K. M. Cheng, ”A novel planar branch-line coupler design for dual-band applications,” IEEE MTT-S Int. Microwave Symp., vol. 2. Jun. 2004, pp. 903-906.
[8] C. -W. Tang, M. -G. Chen, and C. -H. Tsai, ” Design of multipassband microstrip branch-line couplers with open stubs,” IEEE Trans. Microw. Theory Tech., vol. 87, no. 1 pp. 196-204, Jan. 2009.
[9] W. -S. Tung, H. -H. Wu, and Y. -C. Chang, “Design of microwave wide-band quadrature hybrid using planar transformer coupling method,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 7, pp. 1852-1856, Jul. 2003.
[10] C. -H. Ho, L. Fan, K. Chang, “Broad-band uniplanar hybrid-ring and branch-line couplers,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp. 2116-2125, Dec. 1993.
[11] T. Hirota, A. Minakawa, and M. Muracuchi, “Reduced-size branch-line and rat-race hybrids for uniplanar MMIC’s,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 3, pp. 270-275, Mar. 1990.
[12] I. Sakagami, M. Haga, and T. Munehiro, ”Reduced branch-line coupler using eight two-step stubs,” IEE Proc.-Microw. Antennas Propag., vol. 146, no. 6, pp. 455-460, Dec. 1999.
[13] C. -W. Tang, M. -G. Chen, and C. -H. Tsai, ” Miniaturization of microstrip branch-line coupler with dual transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 18, no.3, pp.185-187, Mar. 2008.
[14] C. -W. Tang and M. -G. Chen, ” Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1926-1934, Sep. 2007.
[15] C. -S. Kim, J. -S. Lim, J. -S. Park, D. Ahn, and S. Nam, “A 10 dB branch line coupler using defected ground structure,” in European Microw. Conference, 2000.
[16] C. -W. Tang, M. -G. Chen, Y. S. Lin, and J. -W. Wu, “Broadband microstrip branch-line coupler with defected ground structure,” IEE Electron. Lett., vol. 24, no. 25, pp. 1458-1460, Dec. 2006.
[17] C. You and X. Zhu,” A novel planar dual-band branch line coupler using defect ground structure,” IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2008, pp. 1227-1230.
[18] Z. Liu and R. M. Weikle, “A compact quadrature coupler based on coupled artificial transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 55, no. 9, pp. 1926-1934, Sep. 2007.
[19] C. -W. Wang, T. -G. Ma, and C. -F. Yang, “Miniaturized branch-line coupler with harmonic suppression for RFID applications using artificial transmission lines,” IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2007, pp. 29-32.
[20] A. F. Sheta, A. Mohra and S. F. Mahmoud, ”A new class of miniature quadrature couplers for MIC and MMIC applications” Microwave & Optical Technology Letters, vol. 34, no. 3, pp.215-219, Aug. 2002.
[21] W. -L. Chen and G. -M. Wang, “Design of novel miniaturized fractal-shaped branch-line couplers,” Microwave & Optical Technology Letters, vol. 50, no. 5, pp.1098-1104, May 2008.
[22] M. Nosrati and M. S. Valashani, “A novel compact branch-line coupler using four coupled transmission lines, ”Microwave & Optical Technology Letters, vol. 50, no. 6, pp.1712-1714, Jun. 2007.
[23] H. -H. Hsieh, Y. -T. Liao and L. -H. Lu,” A compact quadrature hybrid MMIC using CMOS active inductors,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1098-1104, Jun. 2007.
[24] T. N. Kuo, Y. -S. Lin, C. -H. Wang, C. H. Chen, “A compact LTCC branch-line coupler using modified-T equivalent-circuit model for transmission line,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 2, pp. 90-92, Feb. 2006.
[25] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005.
[26] N. N. Rao, Elements of Engineering Electromagnetics,6th ed. New Jersey:Pearson,2004.
[27] J. Reed and G. J. Wheeler, “A method of analysis of symmetrical four-port networks,” IEEE Trans. Microw. Theory Tech., vol. 15, no. 12 pp. 889-891, Dec. 2005.
[28] IE3D. ver. 10.2, Zeland Software Inc., Fremont, CA, 2004.
[29]R. F. Harrington, Field Computation by Moment Methods,1st ed. New York:Macmillan,1968.
[30]W. -H. Tu and K. Chang, “Compact second harmonic-suppressed bandstop and bandpass filters using open stubs,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2497-2502, Jun. 2006.