跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊偉翔
Wei-Hsiang Yang
論文名稱: 累進式背擠製加工方式對A6061鋁合金材料性質之影響
指導教授: 葉維磬
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 108
中文關鍵詞: 累進式背擠製超細晶粒
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用由Fatemi-Varzaneh等人所提出的累進式背擠製法(Acumulative back extrusion, ABE),於室溫中對6061鋁合金加工,藉由劇烈塑性變形(Severe plastic deformation, SPD)達到超細晶粒(Ultrafine-grained, UFG)材料。為探討經ABE擠製後材料性質,將透過實驗與模擬,搭配不同的加工方式(正循環、逆循環、胚料反置),並配合硬度、微觀結構與有限元素的模擬分析。從有限元素模擬分析與實驗比較,結果獲得良好的一致性。不同的加工方法皆會影響材料的加工硬化與硬度均勻程度之變化。而本研究能夠生產出跟傳統ABE加工方式相比,均勻性更佳之材料,且可得到奈米等級、擁有高角度之晶界。


    The project used the method of Accumulative Back Extrusion (ABE) which was proposed by Fatemi-Varzaneh, the work used the AA6061 in the room temperature processing, then through the Severe Plastic Deformation (SPD) to reach the Ultrafine-Grained (UFG).In order to probe materials from ABE, through the experiments and simulations, we would use the different processing methods, for example, Positive Cycle, Reverse Cycle and Blank Molding Transposed, then combined with the hardness, micro structure and simulation analysis of Finite Element Method (FEM).
    Comparing the simulation analysis and experiment result of FEM, it showed good agreement. As the result, we could find out that different methods would affect the material of process hardening and the uniformity of Hardness. In this project, it can have better uniformity of materials from traditional ABEed processing, then get the Nano-scale, high-angle grain boundary.

    摘要 iv Abstract v 致謝 vi 目錄 vii 表目錄 xii 圖目錄 xiii 第一章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.3研究目的與動機 8 第二章 基本概要 9 2.1鋁合金簡介與分類 9 2.2鋁-鎂-矽三元合金相圖 12 2.3合金成分對於6061機械性質之影響[19] 13 2.4劇烈塑性變形(Severe plastic deformation, SPD) 14 2.5超細晶粒(Ultrafine Grain, UFG) 15 2.5.1超細晶粒材料之發展 15 2.5.2超細晶粒材料之特性 16 2.5.3超細晶粒材料之製造方法 17 2.6晶粒細化機制 18 2.6.1回復 18 2.6.2再結晶 22 2.6.3晶粒分割 26 2.7電子背向散射繞射(EBSD) 27 第三章 實驗設備與方法介紹 30 3.1實驗設備 30 3.1.1 ABE模具介紹 30 3.2實驗方法 31 3.2.1實驗介紹 31 3.2.2試片材料 32 3.2.3潤滑條件 33 3.2.4熱處理 33 3.3實驗步驟 34 3.4實驗測量 35 3.4.1硬度測量 35 3.4.2硬度均勻性指標 36 3.4.3光學顯微鏡觀測(OM) 37 3.4.4電子背相散射繞射觀測(EBSD) 38 第四章 實驗結果與討論 39 4.1 ABE模擬製程探討 39 4.1.1概要 39 4.1.2有限元素模擬之模型 39 4.1.3基本假設 40 4.1.4模擬材料設定 41 4.1.5模擬網格設定 41 4.1.6模擬摩擦係數設定 43 4.1.7模擬加工參數設定 43 4.1.8有限元素模擬分析 44 4.1.9應變均勻性指標 52 4.2 ABE試片之微硬度試驗 53 4.2.1概要 53 4.2.2模擬分析與硬度試驗之比較 53 4.2.3微硬度實驗分析 58 4.3 ABE製程之成形力探討 67 4.3.1概要 67 4.3.2不同加工方法下成形力比較 67 4.4電子背向式散射繞射(EBSD)之觀測 71 4.4.1概要 71 4.4.2 EBSD觀測位置選擇 72 4.4.3胚料經ABE製程後EBSD觀測結果 73 第五章 結論與建議 77 5.1結論 77 參考文獻 78 附錄A 等效應變分佈圖 82 附錄B模具設計圖 85

    [1] R. Z. Valiev, "Structure and mechanical properties of ultrafine-grained metal," Materials Science and Enginnering:A, Vols. 234-236, pp. 59-66, 1997.
    [2] Y. Huang and T. G. Langdon, "Advances in ultrafine-grained materials," Materialstoday, vol. 16, pp. 85-93, 2013.
    [3] S. Fatemi-Varzaneh and . A. Zarei-Hanzaki, "Accumulative back extrusion (ABE) processing as a novel bulk deformation method," Materials Science and Engineering A, vol. 504, pp. 104-106, 2009.
    [4] M. Reihanian, R. Ebrahimi, M. Moshksar, D. Terada and N. Tsuji, "Microstructure quantification and correlation with flow stress of ultrafine grained commercially pure Al fabricated by equal channel angular pressing (ECAP)," Materials Characterization, vol. 59, pp. 1312-1323, 2008.
    [5] M. Richert, Q. Liu and N. Hansen, "Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression," Materials Science and Engineering: A, vol. 260, pp. 275-283, 1999.
    [6] Y. Beygelzimer, V. Varyukhin, V. Synkov and D. Orlov, "Useful properties of twist extrusion," Materials Science and Engineering: A, vol. 503, pp. 14-17, 2009.
    [7] A. P. Zhilyaev and T. G. Langdon, "Using high-pressure torsion for metal processing: Fundamentals and applications," Progress in Materials Science, vol. 53, pp. 893-979, 2008.
    [8] S. Fatemi-Varzaneh, A. Zarei-Hanzaki, M. Naderi and A. A. Roostaei, "Deformation homogeneity in accumulative back extrusion processing of AZ31 magnesium alloy," Journal of Alloys and Compounds, vol. 507, pp. 207-214, 2010.
    [9] S. Fatemi-Varzaneh , A. Zarei-Hanzaki and S. Izadi, "Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy," J Mater Sci, vol. 46, pp. 1937-1944, 2011.
    [10] G. Faraji, H. Jafarzadeh, H. Jeong, M. Mashhadi and H. Kim, "Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy," Materials and Design, vol. 35, pp. 251-258, 2012.
    [11] H. Alihosseinia, G. Faraji , A. Dizaji and K. Dehghani, "Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)," Materials Characterization, vol. 38, pp. 14-21, 2012.
    [12] N. Haghdadi, A. Zarei-Hanzaki and D. Abou-Ras, "Microstructure and mechanical properties of commercially pure aluminum processed by accumulative back extrusion," Materials Science & Engineering A, vol. 584, pp. 73-81, 2013.
    [13] P. Shaterani, A. Zarei-Hanzaki, S. Fatemi-Varzaneh and S. Hassas-Irani, "The second phase particles and mechanical properties of 2124 aluminum alloy processed by accumulative back extrusion," Materials and Design, vol. 58, pp. 535-542, 2014.
    [14] N. Haghdadi, A. Zarei-Hanzaki, D. Abou-Ras, M. Maghsoudi, A. Ghorbani and M. Kawasaki, "An investigation into the homogeneity of microstructure, strain pattern and hardness of pure aluminum processed by accumulative back extrusion," Materials Science & Engineering A, vol. 595, pp. 179-187, 2014.
    [15] N. Haghdadia, A. Zarei-Hanzakia, H.R. Abedia, D. Abou-Rasb, M. Kawasakic, A.P. Zhilyaeve, "Evolution of microstructure and mechanical properties in a hypoeutectic Al–Si–Mg alloy processed by accumulative back extrusion," Materials Science & Engineering A, vol. 651, pp. 269-279, 2016.
    [16] P. Berbon, N. Tsenev, R. Valie, M. Furukawa, Z. Horita, M. Nemoto Nemoto and T. Langond, "Fabrication of bulk ultrafine-grained materials through intense plastic straining," Metall. and Mater. Trans. A, vol. 29A, p. 2237, 1998.
    [17] M. Kawasaki and T. G. Langdon, "Principles of superplasticity in ultrafine-grained materials," Journal of Materials Science, vol. 42, pp. 1782-1796, 2007.
    [18] 唐自勇, "A7050 與 A2024 鋁合金異質銲接與銲後熱處理 之研究", 交通大學碩士論文, 2009.
    [19] 鄭存閔, "噴覆成型與連續鑄造 6061 鋁合金之塑性加工性及機械性質的研究", 國立成功大學碩士論文, 2004.
    [20] T. Sheppard, “Extrusion of Aluminum Alloys”, 1999, p.78-79
    [21] H.W.M. Philips and P.C. Varley, J. Inst. Met, Vol. 69, 1943, p.317

    [22] R. Z. Valiev, R. Islamgaliev and I. Alexandrov, "Bulk nanostructured materials from severe plastic deforemation," Progress in Materials Science, vol. 45, p. 103, 2003.
    [23] A. Korbel and M. Richert, "Formation of shear bands during cyclic deformation of aluminum," Acta Metall, vol. 33, pp. 1971-1978, 1985.
    [24] M. Mabuchi, K. Kubota and K. Higashi, "New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bar," Mater Trans JIM, vol. 36, p. 1249, 1995.
    [25] R. Schwarz and W. Johnson, "Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals," Phys. Rev. Lett., vol. 51, pp. 415-418, 1983.
    [26] M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, "Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE," Scripta Materialia, vol. 36, p. 681, 1997.
    [27] M. Mabuchi, H. Iwasaki and K. Higashi, "Microstructure and mechanical properties of 5056 Al alloy processed by Equal-channel angular extrusion," Nanostructured Mater, vol. 8, p. 1105, 1997.
    [28] V. M. Segal, "Materials processing by simple shear," Mater. Sci. and Eng. A, vol. 197, p. 157, 1995.
    [29] R. Z. Valiev, R. Islamgaliev and I. Alexandrov, "Bulk nanostructured materials from severe plastic deforemation," Progress in Materials Science, vol. 45, p. 103, 2003.
    [30] 李明富, "利用 ECAE 方法發展次微米晶粒材料之研究", 中山大學碩士論文, pp. 5-6, 1997.
    [31] F.J. Humphreys and M. Hatherly, "Recrystallization and related annealing phenomenon".
    [32] Taku Sakai, Andrey Belyakov, Rustam Kaibyshev, Hiromi Miura and John J. Jonas, "Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions," Progress in Materials Science, pp. 103-207, 2014.
    [33] 林敬量, "商業純鋁在不同溫度經平變硬變後之組織研究" 國立中山大學碩士論文, 2005.
    [34] 丁仕旋, "商用純鋁在50%軋延量下之溫加工變形組織" 國立中山大學碩士論文, 2003.
    [35] 王郁雲, "變形溫度對等徑轉角擠製純鋁之微結構影響" 國立中山大學碩士論文, 2003.
    [36] D. A. Hughes and A. Godfrey, "Dislocation structures formed during hot and cold working," Matels & Material Society, p. 23, 1998.
    [37] B. Bay, N. Hansen,, A. Huhges and D. Kuhlmann-Wilsdorf, "Evolution of f.c.c. deformation structure in polyslip," Acta Matell. Mater., p. 205, 1992.
    [38] 孫佩鈴, "純鋁經大量塑性變形生成細晶粒之研究", 中山大學博士論文, pp. 28-32, 1999.
    [39] 廖忠賢與黃志青, "科學新知", p. 43, 1998.
    [40] 周詩博, "冷軋鋁箔之再結晶組織與機械性質", 中山大學碩士論文, pp. 11-12, 2002.
    [41] V. Randle, "Microstructure Determination and Its Applications," The Institute of Metals, 1992.
    [42] 陳弘志, "A1070在累進式背擠製下的機械性質與微結構之研究", 中央大學碩士論文, 2014.
    [43] 鄭名翔, "6061鋁合金於累進式背擠製成型研究", 中央大學碩士論文, 2015.
    [44] V. Patil Basavaraj, Uday Chakkingal and T. Prasanna Kumar, "Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation," Journal of Materials Processing Technology, vol. 209, pp. 89-95, 2009.
    [45] 洪嘉駿, "以鍛粗加工實驗驗證變分上界限法" 中央大學碩士論文, 2007.

    QR CODE
    :::