跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李閎嚴
Hung-Yen Lee
論文名稱: 離散型Lotka-Volterra競爭系統之行波解的穩定性
Stability of traveling wavefronts for a discrete Lotka-Volterra competition system
指導教授: 許正雄
Cheng-Hsiung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 37
中文關鍵詞: 穩定性Lotka-Volterra
外文關鍵詞: stability, Lotka-Volterra
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究三物種競爭合作關係之離散型Lotka-Volterra 模型行波解的穩定性問題。透過能量加權方法以及比較原則,在較大的速度下,我們證明了行波解具有指數穩定的特性。


    In this thesis, we study the stability of traveling wave solutions for the three species competition cooperation system, which is the discrete version of the Lotka-Volterra system.
    Applying the weighted energy method and the comparison principle, we can derive the result that the traveling wavefronts with large speed are exponentially stable.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Some known results and background . . . . . . . . . . . . . . . . . . . . . 6 3 Stability for traveling wavefronts . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 Weighted energy estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Derivative estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    [1] P. Ashwin, M. V. Bartuccelli, T. J. Bridges and S. A. Gourley, Travelling fronts for the
    KPP equation with spatio-temporal delay, Zeitschrift fur Angewandte Mathematik
    und Physik, 53 (2002), 103-122.
    [2] A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for
    traveling waves in delayed reaction-diffusion equations, J. Differential Equations,
    244 (2008), 1551-1570.
    [3] G.-S. Chen, S.-L. Wu and C.-H. Hsu, Stability of traveling wavefronts for a discrete
    diffusive competition system with three species, preprint, 2018.
    [4] N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a
    diffusing Lotka-Volterra system, Nonlinear Analysis: Real World Applications, 4
    (2003), 503-524.
    [5] X. Hou and Y. Li, Traveling waves in a three species competition-cooperation system,
    Communications on Pure and Applied Analysis, 4 (2017), 1103-1119.
    [6] C.-H. Hsu, J.-J. Lin and S.-L. Wu, Existence and stability of traveling wave solutions
    for discrete three species competitive-cooperative systems, preprint, 2018.
    [7] L. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems
    of three species, Nonlinear Analysis: Real World Applications, 12 (2011), 3691-3700.
    [8] Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model I: Singular
    Perturbations, Discrete and Continuous Dynamical Systems-Series B, 3 (2003),
    79-95.
    [9] W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion
    competition model, J. Dynam. Differential Equations, 22 (2010), 285-297.
    [10] J. I. Kanel, On the wave front of a competition-diffusion system in population dynamics,
    Nonlinear Analysis, 65 (2006), 301-320.
    [11] J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave
    speed for a competition-diffusion system, Nonlinear Analysis, Theory, Methods and
    Applications, 27 (1996), 579-587.
    [12] Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled
    parabolic system, Nonlinear Analysis, 44 (2001), 239-246.
    [13] Y. Kan-on, Fisher wave fronts for the lotka-volterra competition model with diffusion,
    Nonlinear Analysis, Theory, methods and Applications, 28 (1997), 145-164.
    [14] A. W. Leung, X. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra
    system revisited, Discrete and Continuous Dynamical Systems - Series B, 15 (2011),
    171-196.
    [15] P. Miller, Stability of non-monotone waves in a three-species reaction-diffusion model,
    Proceedings of the Royal Society of Edinburgh Section A Mathematics, Cambridge
    University Press 129 (1999), 125-152.
    [16] I. Volpert, V. Volpert and V. Volpert, Traveling Wave Solutions of Parabolic Systems,
    Transl. Math. Monogr., vol. 140, Amer. Math. Soc., Providence, RI. 1994.
    [17] J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J.
    Dynam. Differential Equations, 13 (2001), 651-687. and Erratum to traveling wave
    fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 2
    (2008), 531-533.

    QR CODE
    :::