| 研究生: |
李閎嚴 Hung-Yen Lee |
|---|---|
| 論文名稱: |
離散型Lotka-Volterra競爭系統之行波解的穩定性 Stability of traveling wavefronts for a discrete Lotka-Volterra competition system |
| 指導教授: |
許正雄
Cheng-Hsiung Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 穩定性 、Lotka-Volterra |
| 外文關鍵詞: | stability, Lotka-Volterra |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究三物種競爭合作關係之離散型Lotka-Volterra 模型行波解的穩定性問題。透過能量加權方法以及比較原則,在較大的速度下,我們證明了行波解具有指數穩定的特性。
In this thesis, we study the stability of traveling wave solutions for the three species competition cooperation system, which is the discrete version of the Lotka-Volterra system.
Applying the weighted energy method and the comparison principle, we can derive the result that the traveling wavefronts with large speed are exponentially stable.
[1] P. Ashwin, M. V. Bartuccelli, T. J. Bridges and S. A. Gourley, Travelling fronts for the
KPP equation with spatio-temporal delay, Zeitschrift fur Angewandte Mathematik
und Physik, 53 (2002), 103-122.
[2] A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for
traveling waves in delayed reaction-diffusion equations, J. Differential Equations,
244 (2008), 1551-1570.
[3] G.-S. Chen, S.-L. Wu and C.-H. Hsu, Stability of traveling wavefronts for a discrete
diffusive competition system with three species, preprint, 2018.
[4] N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a
diffusing Lotka-Volterra system, Nonlinear Analysis: Real World Applications, 4
(2003), 503-524.
[5] X. Hou and Y. Li, Traveling waves in a three species competition-cooperation system,
Communications on Pure and Applied Analysis, 4 (2017), 1103-1119.
[6] C.-H. Hsu, J.-J. Lin and S.-L. Wu, Existence and stability of traveling wave solutions
for discrete three species competitive-cooperative systems, preprint, 2018.
[7] L. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems
of three species, Nonlinear Analysis: Real World Applications, 12 (2011), 3691-3700.
[8] Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model I: Singular
Perturbations, Discrete and Continuous Dynamical Systems-Series B, 3 (2003),
79-95.
[9] W. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion
competition model, J. Dynam. Differential Equations, 22 (2010), 285-297.
[10] J. I. Kanel, On the wave front of a competition-diffusion system in population dynamics,
Nonlinear Analysis, 65 (2006), 301-320.
[11] J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave
speed for a competition-diffusion system, Nonlinear Analysis, Theory, Methods and
Applications, 27 (1996), 579-587.
[12] Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled
parabolic system, Nonlinear Analysis, 44 (2001), 239-246.
[13] Y. Kan-on, Fisher wave fronts for the lotka-volterra competition model with diffusion,
Nonlinear Analysis, Theory, methods and Applications, 28 (1997), 145-164.
[14] A. W. Leung, X. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra
system revisited, Discrete and Continuous Dynamical Systems - Series B, 15 (2011),
171-196.
[15] P. Miller, Stability of non-monotone waves in a three-species reaction-diffusion model,
Proceedings of the Royal Society of Edinburgh Section A Mathematics, Cambridge
University Press 129 (1999), 125-152.
[16] I. Volpert, V. Volpert and V. Volpert, Traveling Wave Solutions of Parabolic Systems,
Transl. Math. Monogr., vol. 140, Amer. Math. Soc., Providence, RI. 1994.
[17] J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J.
Dynam. Differential Equations, 13 (2001), 651-687. and Erratum to traveling wave
fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 2
(2008), 531-533.