跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴諺謀
Yan-Mou Lai
論文名稱: 利用電漿化學模型解釋巨大噴流頂端觀測到的綠魅現象
指導教授: 郭政靈
Chen-Lin Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學與工程學系
Department of Space Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 82
中文關鍵詞: 巨大噴流綠魅電漿化學模型瑞利值
外文關鍵詞: Gigantic Jet, Green Ghost, Morphology, Plasma Chemistry Model
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這項研究的目的是為了驗證一種高空閃電巨大噴流(Gigantic jet)是否產生綠魅(Green ghost)的現象。綠魅是一個目前經文獻證明在一種高空閃電——紅色精靈(Red sprite)產生後的綠色氣暉,產生原因主要是紅色精靈的氣體放電中,自由電子受到背景電場的加速,激發背景氧原子O(3P)到激發態O(1S),O(1S)再躍遷到低階軌域O(1D),同時將能量以557.7nm譜線的光子輻射。巨大噴流是由雲頂向上傳播的電漿通道,起初可視為向上發展的藍色噴流(Blue jet),但伴隨背景電場又激發出40到90公里高度的紅色精靈,可視為藍色噴流和紅色精靈的綜合體。但目前為止仍沒有任何文獻證明巨大噴流產生綠魅的現象。
    為了證實這個猜想,找尋近三年內台灣巨大噴流紀錄並沒有巨大噴流產生綠魅的現象。通常N21P紅色譜線的生命週期為8s,時間遠短於一幀(0.33s),但綠魅的現象中的557.7nm譜線的光子理論衰減時間約為0.7s。但2024年台灣拍攝最新的一個巨大噴流事件,在綠色譜線有明顯的時間延遲的效果從巨大噴流的下一幀的綠色通道畫面觀察到557.7nm綠色譜線的增強。
    考慮實際觀測條件的影響,做了以下數值調整:我們發展以拍攝資料背景星場的視星等和溫度等資料,並考慮大氣影響,推算相機接收的絕對光子通量Rayleigh。先擬合出恆星灰階值(pixel value)與瑞利值之間的關係,從而推測出綠魅的瑞利值是否符合文獻和模型的數值。該事件的綠魅發生時為198.8±2.67Rayleigh,與文獻中的強度符合。
    由於綠魅發生的原因與電漿流(streamer)有關,我們使用電漿化學模型(Plasma Chemistry Model)模擬高空閃電內部電漿流。藉由調整產生綠魅關鍵的因素,如電漿流的電場值以及背景O(3P)的密度(Density),觀察它們對綠魅產生的激發態O(1S)以及對應產生557.7nm光子的發光速率(Emission rate)等。模型在557.7譜線光子的發光速率範圍在15~164photons∙〖cm〗^(-3) s^(-1)。在符合理論預測。
    本研究證實了巨大噴流事件中的綠魅的現象,並提出以下兩點說明:(1) 觀測中得到的衰退時間(Decay lifetime)與文獻大致吻合,以及(2) 事件557.7譜線光子發光速率經換算位於模型的範圍內(16 to 67 photons∙〖cm〗^(-3) s^(-1))。本研究對於巨大噴流在夜間90公里高度氣暉層的影響提供直接的證據,並且也從電漿化學模型研究綠魅的產生條件。


    The study aims to qualify whether the airglow enhancement called green ghost could be induced by the gigantic jet, The green ghost is a green aura that has been shown in the literature to occur after the production of one type of Transient Luminous Events (TLEs), the Red sprite, which is mainly caused by the depletion of O(1S) and the production of O(1D) and the emission of light in the 557.7 nm emission line (hυ5577). Gigantic jet is also one type of TLEs that propagate upward from the cloud to the top, and can develop up to 90 km, which is the altitude where the red sprite is generated. Due to the similarity of the mechanism and atmospheric environment, the structure at the top of the giant jet can be regarded as red sprite. However, there is no evidence in the literature of the green ghost emitted at the top of a gigantic jet so far. To confirm the conjecture, our team searched for a gigantic jet event and tried to extract the signal of the green ghost by morphology.
    The verification of extracted areas is green ghost or not includes calculating the photon flux by the stars on the image using several formulas and simulating the streamer on the mesosphere using plasma chemistry models. The photon flux of the green ghost for the event was derived to be 198.8±2.67 Rayleigh.
    The Plasma Chemistry Model is a model that can simulate the internal plasma streamer of Transient Luminous Events by adjusting the parameters to observe their densities and emission rates for photons emit by green ghost. The emission rates of hν(5577) is between 15 and 164 photons∙〖cm〗^(-3) s^(-1).
    The conclusion is that this gigantic jet is highly compatible with the production of the green ghost. The Decay lifetime is in general agreement with the literature, and the photon emission rate of the green ghost of the event has converted to be in the range of 16 to 67 photons∙〖cm〗^(-3) s^(-1), which is within the range of the plasma chemical model. This study represents a considerable advance in the scientific study of the coupling of the lower and upper atmosphere, such as the content of oxygen atoms (O) in the ionosphere, which is an important constituent of the ionosphere that affects radio reflection and atmospheric chemical reactions.

    中文摘要 ……………………………………………………………… i 英文摘要 ……………………………………………………………… iii 致謝 ……………………………………………………………… v 目錄 ……………………………………………………………… vi 圖目錄 ……………………………………………………………… viii 表目錄 ……………………………………………………………… xi 一、 緒論………………………………………………………… 1 1-1 高空閃電簡介……………………………………………… 1 1-2 研究對象…………………………………………………… 2 1-3 研究方法與目的…………………………………………… 7 二、 觀測資料…………………………………………………… 9 2-1 巨大噴流影像簡介………………………………………… 9 2-2 巨大噴流影像處理………………………………………… 10 2-3 像素值與Rayleigh值的關係………………………………… 14 2-4 綠魅Rayleigh值……………………………………………… 23 三、 電漿化學模型的模擬分析………………………………… 26 3-1 模型介紹…………………………………………………… 26 3-2 電漿化學模型的密度與emission rate……………………… 29 3-3 O(1S)的主導反應式與反應速率…………………………… 33 3-3-1 預設值……………………………………………………… 33 3-3-2 電場增加(Ek:6) ……………………………………………… 34 3-3-3 O(3P)密度×10倍……………………………………………… 35 3-4 綠色譜線hν(5577)的主導反應式與反應速率……………… 37 3-5 N2(A)的主導反應式與反應速率…………………………… 39 3-5-1 預設值……………………………………………………… 39 3-5-2 電場增加(Ek:6) ……………………………………………… 41 3-5-3 O(3P)密度×10倍……………………………………………… 42 3-6 O_2^+(b)的主導反應式與反應速率…………………………… 44 四、 觀測資料與模擬比較與討論……………………………… 47 4-1 綠色通道訊號……………………………………………… 47 4-2 綠魅衰變壽命計算………………………………………… 47 4-3 巨大噴流電流………………………………………………… 49 4-4 由觀測值估算streamer反應速率…………………………… 50 4-5 巨大噴流對照………………………………………………… 53 五、 總結與結論………………………………………………… 55 5-1 研究成果…………………………………………………… 55 5-1-1 影像處理…………………………………………………… 55 5-1-2 像素值-瑞利值關係………………………………………… 55 5-1-3 模型分析…………………………………………………… 56 5-2 研究貢獻…………………………………………………… 56 參考文獻 ……………………………………………………………… 58

    Baker, D. J., & Romick, G. J. (1976). The rayleigh: interpretation of the
    unit in terms of column emission rate or apparent radiance
    expressed in SI units. Applied optics, 15(8), 1966-1968.
    Barrington-Leigh, C. P., Inan, U. S. (1999). Elves: Ionospheric Heating
    by the Electromagnetic Pulses from Lightning.
    https://wellbeing.research.mcgill.ca/elves/
    Boggs, L. D., Liu, N., Peterson, M., Lazarus, S., Splitt, M., Lucena, F.,
    Nag, A., & Rassoul, H. K. (2019). First observations of gigantic
    jets from geostationary orbit. Geophysical Research Letters, 46(7),
    3999-4006.
    Chiou, S.-W., Lin-Ni, H., Nee, J.-B., Jao, C.-S., Wang, B.-J., Yan-Fu, C.,
    Teh, W.-L., Shi-Hao, C., Kuang-Wu, L., & Chou, Y.-C. (2007).
    First ground observations of OI5577 green line emission over the
    Taiwan area. TAO: Terrestrial, Atmospheric and Oceanic Sciences,
    18(4), 8.
    Chou, C.-C. (2017). 聯合觀測喜馬拉雅山區上空重力波與紅色精靈
    National Central University].
    Da Silva, C. L., & Pasko, V. P. (2012). Simulation of leader speeds at
    gigantic jet altitudes. Geophysical Research Letters, 39(13).
    Da Silva, C. L., & Pasko, V. P. (2013a). Dynamics of streamer‐to‐leader
    transition at reduced air densities and its implications for
    propagation of lightning leaders and gigantic jets. Journal of
    Geophysical Research: Atmospheres, 118(24), 13,561-513,590.
    Da Silva, C. L., & Pasko, V. P. (2013b). Vertical structuring of gigantic
    jets. Geophysical Research Letters, 40(12), 3315-3319.
    Ebert, U., Montijn, C., Briels, T. M., Hundsdorfer, W., Meulenbroek, B.,
    Rocco, A., & van Veldhuizen, E. M. (2006). The multiscale nature
    of streamers. Plasma Sources Science and Technology, 15(2), S118.
    Erman, P., & Larsson, M. (1977). Lifetimes of Excited Levels in Some
    Important Ion-molecules. Part II: O2+. Physica Scripta, 15(5-6),
    335.
    Hara, T., & Yamamoto, O. (1996). Modelling of a transmission tower for
    lightning-surge analysis. IEE Proceedings-Generation,
    Transmission and Distribution, 143(3), 283-289.
    Haralick, R. M., Sternberg, S. R., & Zhuang, X. (1987). Image analysis
    using mathematical morphology. IEEE transactions on pattern
    analysis and machine intelligence(4), 532-550.
    Hsu, R. R., Chen, A. B., Kuo, C. L., Su, H. T., Frey, H., Mende, S.,
    Takahashi, Y., & Lee, L. C. (2009). On the global occurrence and
    impacts of transient luminous events (TLEs). AIP conference
    proceedings,
    Huang, X., Lu, G., Liu, F., Cheng, Z., Lucena, F., Liu, Y., Xue, X., Wang,
    Y., Cohen, M. B., & Ashcraft, T. (2024). Enhancement of green
    ghosts due to recurrence of sprite element. Geophysical Research
    Letters, 51(20), e2024GL108397.
    Johnston, J., & Broadfoot, A. (1993). Midlatitude observations of the
    night airglow: implications to quenching near the mesopause.
    Journal of Geophysical Research: Space Physics, 98(A12), 21593
    21603.
    Krehbiel, P. R., Riousset, J. A., Pasko, V. P., Thomas, R. J., Rison, W.,
    Stanley, M. A., & Edens, H. E. (2008). Upward electrical
    discharges from thunderstorms. Nature Geoscience, 1(4), 233-237.
    Kuo, C., Huang, T. Y., Chang, S., Chou, J., Lee, L., Wu, Y., Chen, A., Su,
    H.-T., Hsu, R.-R., & Frey, H. (2012). Full‐kinetic elve model
    simulations and their comparisons with the ISUAL observed
    events. Journal of Geophysical Research: Space Physics, 117(A7).
    Lazarus, S., Splitt, M., Brownlee, J., Spiva, N., & Liu, N. (2015). A
    thermodynamic, kinematic and microphysical analysis of a jet and
    gigantic jet‐producing Florida thunderstorm. Journal of
    Geophysical Research: Atmospheres, 120(16), 8469-8490.
    Lu, G., Cummer, S. A., Lyons, W. A., Krehbiel, P. R., Li, J., Rison, W.,
    Thomas, R. J., Edens, H. E., Stanley, M. A., & Beasley, W. (2011).
    Lightning development associated with two negative gigantic jets.
    Geophysical Research Letters, 38(12).
    Luque, A., & Ebert, U. (2009). Emergence of sprite streamers from
    screening-ionization waves in the lower ionosphere. Nature
    Geoscience, 2(11), 757-760.
    Malagón‐Romero, A., Pérez‐Invernón, F. J., & Gordillo‐Vázquez, F. J.
    (2023). Chemical activity of low altitude (50 km) sprite streamers.
    Journal of Geophysical Research: Atmospheres, 128(14),
    e2023JD038570.
    Meyer, T. C., Lang, T. J., Rutledge, S. A., Lyons, W. A., Cummer, S. A.,
    Lu, G., & Lindsey, D. T. (2013). Radar and lightning analyses of
    gigantic jet‐producing storms. Journal of Geophysical Research:
    Atmospheres, 118(7), 2872-2888.
    Neubert, T., Chanrion, O., Heumesser, M., Dimitriadou, K., Husbjerg, L.,
    Rasmussen, I. L., Østgaard, N., & Reglero, V. (2021). Observation
    of the onset of a blue jet into the stratosphere. Nature, 589(7842),
    371-375.
    Pasko, V. P. (2009). Lightning-related transient luminous events at high
    altitude in the Earth’s atmosphere.
    Pasko, V. P., Inan, U. S., & Bell, T. F. (2000). Fractal structure of sprites.
    Geophysical Research Letters, 27(4), 497-500.
    Peng, K. M., Hsu, R. R., Chang, W. Y., Su, H. T., Chen, A. B. C., Chou, J.
    K., Wu, Y. J., Chang, S. C., Hung, C. L., & Yang, I. C. (2018).
    Triangulation and coupling of gigantic jets near the lower
    ionosphere altitudes. Journal of Geophysical Research: Space
    Physics, 123(8), 6904-6916.
    Peterson, M., Light, T. E., & Mach, D. (2022). The illumination of
    thunderclouds by lightning: 1. The extent and altitude of optical
    lightning sources. Journal of Geophysical Research: Atmospheres,
    127(1), e2021JD035579.
    Rubens, H., & Kurlbaum, F. (1901). On the heat radiation of long wave
    length emitted by black bodies at different temperatures.
    Astrophysical Journal, vol. 14, p. 335, 14, 335.
    Schunk, R. W. N., A. F. (2009). Ionospheres: Physics, Plasma Physics,
    and Chemistry (2nd ed.). Cambridge University Press.
    Sentman, D., Stenbaek‐Nielsen, H., McHarg, M., & Morrill, J. (2008).
    Plasma chemistry of sprite streamers. Journal of Geophysical
    Research: Atmospheres, 113(D11).
    Sentman, D. D., Wescott, E. M., Osborne, D., Hampton, D., & Heavner,
    M. (1995). Preliminary results from the Sprites94 aircraft
    campaign: 1. Red sprites. Geophysical Research Letters, 22(10),
    1205-1208.
    Soula, S., Mlynarczyk, J., van der Velde, O., Montanya, J., & Leclerc, E.
    (2023). High production of gigantic jets by a thunderstorm over
    Indian Ocean. Journal of Geophysical Research: Atmospheres,
    128(22), e2023JD039486.
    Soula, S., van Der Velde, O., Montanya, J., Huet, P., Barthe, C., & Bór, J.
    (2011). Gigantic jets produced by an isolated tropical thunderstorm
    near Réunion Island. Journal of Geophysical Research:
    Atmospheres, 116(D19).
    Stenbaek-Nielsen, H., Ashcraft, T., McHarg, M., & Harley, J. (2022).
    Analysis and modeling of sprite green ghosts. Authorea Preprints.
    Su, H.-T., Hsu, R.-R., Chen, A., Wang, Y., Hsiao, W., Lai, W., Lee, L.-C.,
    Sato, M., & Fukunishi, H. (2003). Gigantic jets between a
    thundercloud and the ionosphere. Nature, 423(6943), 974-976.
    Tang, K., Tibaudo, C., & Schroeder, J. W. (2003). Advanced software
    products for atmospheric remote sensing. Targets and Backgrounds
    IX: Characterization and Representation,
    Tarasenko, V. (2022). Analysis of Dynamics of Atmospheric Discharges
    Using Data on Cylindrically and Spherically Shaped Streamers.
    Atmospheric and Oceanic Optics, 35(2), 164-167.
    van der Velde, O., Montanyà, J., & López, J. (2019). High-speed video
    observations of Gigantic Jets and negative sprites in Colombia.
    Geophysical Research Abstracts,
    van der Velde, O. A., Montanyà, J., López, J. A., & Cummer, S. A.
    (2019). Gigantic jet discharges evolve stepwise through the middle
    atmosphere. Nature communications, 10(1), 4350.
    Winkler, H., Yamada, T., Kasai, Y., Berger, U., & Notholt, J. (2021).
    Model simulations of chemical effects of sprites in relation with
    observed HO 2 enhancements over sprite-producing thunderstorms.
    Atmospheric Chemistry and Physics, 21(10), 7579-7596.
    杨静, 郄秀书, 张广庶, 赵阳, & 张彤. (2008). 发生于山东沿海雷暴
    云上方的红色精灵
    郭政靈, 陳炳志, & 許瑞榮. (2011). 巨大噴流不同尺度下的研究.
    郭政靈, 許., 蘇漢宗, 李羅權 (2006). 高空大氣放電現象的多樣性
    與複雜性. 物理雙月刊, 廿八卷二期.
    https://tpl.ncl.edu.tw/NclService/JournalContentDetail?SysId=A06
    063714
    盧太城. (2024). 南橫上空出現喇叭型紅光 專家:罕見巨大噴流.
    https://www.cna.com.tw/news/ahel/202407230136.aspx

    QR CODE
    :::