| 研究生: |
杜珮姍 Pei-Shan Tu |
|---|---|
| 論文名稱: |
超薄二維微粒電漿庫侖流的微觀運動行為 Micro-Dynamics of Dusty Plasma Liquid in a Narrow Channel |
| 指導教授: |
伊林
I Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 微粒電漿 |
| 外文關鍵詞: | dusty plasma |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
薄膜液體在許多科學技術上被廣泛應用,例如潤滑液。液態薄膜
的特性與大量液體行為是極不相同的。這裡,我們所要探討的是強偶
合庫侖液體在一個狹小縫隙中的微觀動力行為。在分子尺度下,這些
液體受到邊界的效應的侷限而有2 到3 層的影響範圍。 若定義層與
層之間的距離為d ,在改變狹縫寬度由7d 到5d 時有明顯的結構改
變,導因於整個系統受到邊界受限,而非只有靠近邊界的區域。寬度
由大到小,粒子的行為也由液體趨向固體。而狹縫寬度愈小並不保證
就具有較好的排列結構,這需要考慮到寬度適當與否。我們的研究便
是透過統計方式,來了解粒子在不同寬度下,受邊界效應的運動行為。
Abstract
Thin film liquid like lubricant is important on science and technology. The
properties of thin film liquid are quite different from those of bulk liquid. In our
work, we study the micro-dynamics of strongly coupled Coulomb liquid in a narrow
channel. At molecular scale, the confinement induced layering transition in a nar-row
channel due to two to three layers of boundary effect. Here we define d as the
spacing between two layers. By reducing the confining width, the layering transition
occurs between 7d and 5d. However, while reducing the confining width, it does not
guarantee that it can form a good packing structure. The good packing structure
only occurs at proper confining width. The confinement also induces phase tran-sitions
from liquid to solid like state. Our study not only demonstrates the laying
transition but also provides the dynamical behaviors of particles in confined liquid.
[1] M. Heuberger, M. Zach, N.D. Spencer, 292, 905 (2001).
[2] S. Granick, Phys. Today, July, 26 (1999).
[3] M. L. Gee, P. M. Mcguiggan, J. N. Israelachvili J. Chem. Phys. 93,1895(1990).
[4] W. van Megen, I. K. Snook, J. Chem. Soc. Fraday Trans. 75, 1095 (1979).
[5] J. H. Chu and Lin I, Phys. Rev. Lett.72, 4009(1994).
[6] J.V. Alsten and S. Granick, Phys. Rev. Lett. 61, 2570,(1988)
[7] A.L. Demirel and S. Granick, Phys. Rev. Lett. 77, 4330 (1996).
[8] J. Klein and E. Kumacheva, Science 269, 816 (1995).
[9] C.-J. Yu, A. G. Richter, A. Datta, M. K. Durbin, and P. Dutta, Phys. Rev. Lett.
82, 2326 (1999).
[10] B. Bhushan, J.N. Israelachvili, and U. Landman, Nautre 374, 607 (1995).
[11] R. G. Horn, J. N. Israelachvili, J. Chem. Phys. 75, 1400(1981).
[12] P.A. Thompson, G.S. Grest, M.O. Robbins, Phys. Rev. Lett. 68, 3448 (1992).
[13] C. Denniston and M.O. Robbins, Phys. Rev. Lett. 87, 178302 (2001).
[14] C.L. Rhykerd Jr, M. Schoen, D. J. Diestler and J. H. Cushman, Nature, 330,
461 (1987).
[15] M. E. Cates, J.P. Wittmer, J. P. Bouchaud, and P. Claudin, Phys. Rev. Lett.81,
1841 (1998).
[16] H. Ikezi, Phys. Rev. Lett.42, 1688(1979).
[17] W.T. Juan and Lin I, Phys. Rev. Lett. 80, 3073(1998).
[18] Y.J. Lai and Lin I, Phys. Rev. E 64, 015601 (2001).
[19] Lin I, Wen-Tau Juan, Chih-Hui Chiang, and J.H.Chu, Science 272, 1626 (1996).
[20] J. Gao, W.D. Luedtke, and U. Landman, Phys. Rev. Lett. 79, 705 (1997).
[21] W.L. Teng, Master thesis, National Central University, Taiwan (2002).