跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃馪珽
Yian Haung
論文名稱: 單槽連續進流回分式活性污泥系統微生物菌相之研究
指導教授: 廖述良
Shu-Liang Liaw
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 62
中文關鍵詞: 微生物菌群結構分子生物技術聚合酉每 連鎖反應16S rDNA變性
外文關鍵詞: 16S rDNA, PCR (polymerase chain reaction, microbial community structure
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物廢水處理系統主要是藉由不同的微生物進行污染物的分解以達到淨
    化水質的效果,因此微生物菌群結構與系統處理效果具有相關性。然而,由於
    傳統菌種分離培養及顯微鏡觀察等方法缺乏效率且易產生誤差,因此無法確切
    顯示出菌群結構與處理效率之關係以作為系統操控之依據。近年來分子生物學
    的發展,許多分子生物技術均可應用於菌群結構之分析,故本研究將評估,以
    16S rDNA為分析基礎,利用聚合酉每 連鎖反應(polymerase chain reaction;PCR)
    與變性梯度凝膠電泳法 (denaturing gradient gel electrophoresis;DGGE)等分子生
    物技術的結合,分析單槽連續進流回分式活性污泥系統中污泥菌群結構變化之
    可行性,此外,配合水質及監測數據的分析,以瞭解菌群結構變化對系統去除
    效率及監測數據之影響性。由實驗結果顯示,PCR-DGGE技術確實可以靈敏地
    追蹤單槽活性污泥系統中主要菌群變化狀況。當主要菌群菌群結構變化迅速
    時,處理效率亦明顯受到影響,每個操作循環的氧化還原電位(ORP)監測曲線
    差異性也隨之增大;當菌群結構朝向穩定狀態時,優勢菌群的代謝作用成為系
    統最主要的分解機制,故去除率不再有明顯的波動,ORP 監測曲線變化趨勢也
    呈現一致的狀態。


    In biological wastewater treatment processes, the structure of microbial
    community is one of the important factors which will affect operational performance
    of the processes. The structure, however, is very difficult to examine and monitor
    with traditional microbiological techniques, such as microscopy and cultivation.
    Recently, the microbial community examining techniques, based on PCR
    amplification of the 16S rDNA gene followed by denaturing gradient gel
    electrophoresis (DGGE) of the amplicons, has become a useful technique for study of
    the microbial community structure. Therefore, the purpose of this study is: (1) to find
    out the suitability of applying the PCR-DGGE technique to examine the microbial
    community structure of a single-tank continuous inflow SBR; (2) to find out the
    relationship between the microbial community structure and the removal efficiency;
    and (3) to find out the relationship between the microbial community structure and
    the pattern of ORP profile. The results have shown that the rapid shift of populations
    was observed in the period of the start-up stage, and succession toward a more stable
    community structure along with cultivation time. As a relatively stable assemblage of
    populations is achieved, the removal efficiency and the pattern of ORP profile are
    almost constant. In conclusion, the PCR-DGGE technique is a feasible technology for
    study of the dynamic variability of microbial community structure in the
    continuous-flow SBR system.

    目錄……………………………………………………………………..Ⅰ 圖目錄…………………………………………………………………..Ⅳ 表目錄…………………………………………………………………..Ⅴ 第一章 前言 1-1 研究緣起………………………………………………………………1 1-2 研究目的………………………………………………………………2 第二章 文獻回顧 2-1 分類方法………………………………………………………………3 2-2 分子生物技術…………………………………………………………4 2-3 變性凝膠梯電泳法……………………………………………………6 2-3-1 基本原理…………………………………………………………..7 2-3-2 應用性……………………………………………………………..9 2-3-2-1 分析群落組成………………………………………………….9 2-3-2-2 分析群落動態變化…………………………………………….10 第三章 實驗設備與方法 3-1 實驗方法……………………………………………………………... .. 11 3-1-1 實驗設計……………………………...……………………………11 3-1-1-1 污泥來源………………………………………………………..11 3-1-1-2 污泥採樣時間及方法…………………………………………..12 3-1-1-3 水質採樣及監測數據……………………………………….….12 3-1-2 分析方法……………………………...…………………………....12 5 3-1-2-1 總DNA萃取……………………………………………………13 3-1-2-2 聚合酉每 連鎖反應(PCR).………………………………………. 14 3-1-2-3 變性梯度明膠電泳法(DGGE).……………………………….. 16 3-1-2-4 水質分析………………………………………………………. 18 3-2 實驗設備…………………………………………………………….… 18 3-2-1 單槽連續進流回分式活性污泥處理系統………………………... 18 3-2-1-1 反應槽………………………………………………………….. 19 3-2-1-2 系統監測及控制設備……………………………………...….. 20 3-2-1-3 操作條件……………………………………………………….. 20 3-2-2 其他分析設備…………………………………………………….. 22 第四章 結果與討論 4-1 應用PCR-DGGE 追蹤單槽活性污泥系統菌群變化之可行性評估.. 24 4-1-1 PCR 抑制問題之解決過程.………………………………..……. 24 4-1-2 馴養期菌群結構變化分析 …………...…………………………... 27 4-1-2-1 DGGE 圖譜結果………………………………………………. 27 4-1-2-2 馴養期菌群結構與植種污泥之比較………………………… 30 4-1-2-3 菌群組成變化趨勢分析……………………………………….31 4-1-3 穩定期菌群結構變化分析 ………………….………………...…..32 4-1-4 PCR-DGGE 技術可行性評估…………………………………... 35 4-1-5 不同操作相下菌群之變化 ………………………………………..36 4-2 主要菌群組成變化與水質、ORP 監測數據間之關係………………38 4-2-1 菌群消長變化與系統去除效率之相關性 ………………………..39 4-2-1-1 馴養期…………………………………………………………..39 4-2-1-2 穩定期…………………………………………………………..40 6 4-2-2 主要菌群組成變化與ORP 監測數據間之相關性……………….41 4-2-2-1 馴養期….……………………………………………………….41 4-2-2-2 穩定期…………………………………………………………..42 第五章 結論與建議 5-1 結論…………………………………………………………………….44 5-2 建議…………………………………………………………………….45 參考文獻…………………………………………………………………46

    Al-Ghusain I. A., and J. O. Hao. 1995. Real-time control aerobic-anaerobic sludge
    digestion using ORP. Jornual of Environmental Engeering. 121:717-720.
    Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995. Phylogenetic identification and
    in situ detection of individual microbial cells without cultivation. Microbiological
    Reviews 59:143-169.
    Barns, S. M., R. E. Fundyga, M. W. Jeffries, and N. R. Pace. 1994. Remarkerable
    archaeal diversity detected in a Yellowstone National Park hot spring
    environment. Proc. Natl. Acad. Sci. USA. 91:1609-1613.
    Bitton, G. 1995. Wastewater Microbiology, Wiley, London.
    Borneman, J., P. W. Skroch, K. M. O''Sullivan, J. A. Palus, N. G. Rumjanek, J. L.
    Jansen, J. Nienhuis, and E. W. Triplett. 1996. Molecular microbial diversity of an
    agricultural soil in Wisconsin. Appl. Envir. Microbiol. 62:1935-1943.
    Bull, A. T., and J. H. Slater. 1982. Microbial interactions and community structure. In
    A. T. Bull and J. H. Slater (eds.). Microbial Interactions and Communities.
    Academic Press, London, pp.13-44.
    Charpentier, J., M. Florentz, and G. David. 1987. Sequencing batch reactor system for
    nutrient removal: ORP and pH profile. Wat. Sci. Tech. 19:645-655.
    Charpentier, J., H. G. Martin, and Y. Mogno. 1989. Oxidation-reduction potential
    (ORP) regulation as a way to optimize pollution removal and energy saving in
    the low load activated sludge process. Wat. Sci. Tech. 21:1209-1233.
    Curtis, T. P., and N. G. Caine. 1998. The comparison of the diversity of activated
    55
    sludge plants. Wat. Sci. tech. 37:71-78.
    Duineveld, B. M., A. S. Rosado, J. D. van Elsas, and J. A. van Veen. 1998. analysis of
    the dynamics of bacterial communitues in the rhizosphere of the chrysanthemum
    via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl.
    Environ. Microbiol. 64:4950-4957.
    Fantroussi, S. E., L. Verschuere, W. Verstraete, and E. M. Top. 1999. Effect of
    phenylurea herbicides on soil microbial communities estimated by analysis of
    16S rRNA gene fingerprints and community-Level physiological profiles. Appl.
    Environ. Microbiol. 65:982-988.
    Felske, A., B. Engelen, U. N?bel and H. Backhaus. 1996. Direct ribosomal
    isolation from soil to extract bacterial rRNA for community analysis. Appl.
    Environ. Microbiol. 62:4162-4167.
    Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel
    electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring
    microbial mat community. Appl. Environ. Microbiol. 62:340-346.
    Fournier, D., R. Lemieux, D. Couillard 1998. Genetic evidence for highly diversified
    bacterial populations in wastewater sludge during biological leaching of metals.
    Biotechnology Letters 20(1): 27-31.
    Fuhrman, J. A., K. McCallum, and A. A. Davis. 1993. Phylogenetic diversity of
    subsurface marine microbial communities from the Atlantic and Pacific Oceans.
    Appl. Environ. Microbiol. 59:1294-1302.
    Gray, J. P., and R. P. Herwig. 1996. Phylogenetic analysis of the bacterial
    communities in marine sediments. Appl. Environ. Microbiol. 62:4049-4059.
    Hao, O. J., and J. Hunag. 1996. Alternating aerobic-anoxic process for nitrogen
    56
    removal: process evaluation. Water Environmental Research. 68:83-93.
    Jenkins, C. J. and D. S. Mavinic. 1989. anoxic-aerobic digestion of wastewater
    activated sludge: partⅡ-supernatant characterics, ORP monitoring results and
    overall rating system. Environmental Technology Letters. 10:371-384.
    Jensen, S., L. ?vreas, F. L. Daae, and V. Torsvik. 1998. Diversity in methane
    enrichments from an agricultural soil revealed by DGGE separation of PCR
    amplified 16S rDNA fragments. FEMS Microbiol. Ecol. 26:17-26.
    Kowalchuk, G. A., J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley, and J. W.
    Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the beta
    subdivision of the class Proteobacteria in coastal sand dunes by denaturing
    gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal
    DNA fragments. Appl. Environ. Microbiol. 63:1489-1497.
    Koch, f. A. and W. K. Oldham.1985. Oxidation-reduction potential-a tool of
    monitoring, control and optimization of biological nurient removal system. Wat.
    Sci. Tech. 17:259-281.
    Lee, D.-H., Y.-G. Zo, and S.-J. Kim. 1996. Nonradioactive method to study genetic
    profiles of natural bacterial communities by PCR-single-strand Conformation
    polymorphism. Appl. Environ. Microbiol. 62:3112-3120.
    Liesack, W. and E. Stackebrandt. 1992. Occurrence of novel groups of the domain
    Bacteria as revealed by analysis of genetic material isolated from an Australian
    terrestrial environment. J. Bacterial. 174:5072-5078.
    Liu, W.-T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of
    microbial diversity by determining terminal restriction fragment length
    polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol.
    57
    63:4516-4522.
    Mathews, C. K., K. E. van Holde, and K. G. Ahern. 2000. Biochemistry. Third
    Edition. Addison Wesley Longman.
    Moyer, C. L., F. C. Dobbs, and D. M. Karl. 1994. Estimation of diversity and
    community structure through restriction fragment length polymorphism
    distribution analysis of bacterial 16S rRNA genes from a microbial mat at an
    active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ.
    Microbiol. 60:871-879.
    Moyer, C. L., F. C. Dobbs, and D. M. Karl. 1995. Phylogenetic diversity of the
    bacterial community from a microbial mat at an active, hydrothermal vent system,
    Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61:1555-1562.
    Murray, A. E., C. M. Preston, R. Massana, L. T. Taylor, A. Blakis, k. Wu, E. F.
    DeLong. 1998. Seasonal and spatial variability of bacterial and archaeal
    assemblages in the coastal waters near Anverse Island, Antarctica. Appl. Environ.
    Microbiol. 64:2585-2595.
    Murray, A. E., J. T. Hollibaugh, and C. Orrego. 1996. Phylogenetic composition of
    bacterioplankton from two California estuaries compared by denaturing gradient
    gel electrophoresis of 16S rDNA fragments. Appl. Environ. Microbiol.
    62:2676-2680.
    Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural
    ecosystems. Microbiology 2:317-322.
    Muyzer, G., and K. Smalla. 1998. Application of denaturing gradient gel
    electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in
    microbial ecology. Antonie Van Leeuwenhoek. 73:127-141.
    58
    Muyzer, G., E. C. DeWaal, and A. G. Uitterlinden. 1993. Profiling of complex
    microbial populations by denaturing gradient gel electrophoresis analysis of
    polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ.
    Microbiol. 59:695-700.
    Myers, R. M., S. G. Fisher, L. S. Lerman, and T. Maniatis. 1985. Nearly all single
    base substitutions in DNA fragments joined to a GC-clamp can be detected by
    denaturing gradient gel electrophoresis. Nucleic Acids Res. 13:3131-3145.
    Myers, R. M., T. Maniatis, and L. S. Lerman. 1987. Detection and localization of
    single base changes by denaturing gradient gel electrophoresis. Methods in
    Enzymology 155:501-527.
    Nielsen, A. T., W. -T. Liu, C. Filipe, L. Grady, Jr., S. Molin, and D. A. Stahl. 1999.
    Identification of a novel group of bacteria in sludge from a deteriorated biological
    phosphorus removal reactor. Appl. Environ. Microbiol. 65:1251-1258.
    Okabe, S., H. Satoh, and Y. Watanabe. 1999. In situ analysis of nitrifying biofilms as
    determined by the in situ hybridization and the use of microeletrodes. Appl.
    Environ. Microbiol. 65:3182-3191.
    Pace, N. R. 1996. New perspectives on the natural microbial world: molecular
    microbial ecology. ASM news 62:463-470.
    Peddie, C. C., D. S. Mavanic and C. J. Jenkins. 1990. Use of ORP as monitoring and
    control of aerobic sludge digestion. J. Environmental Engineering 116:461-471.
    Raskin, L., J. M. Stromley, B. E. Rittmann, and D. A. Stahl. 1994. Group-specific
    16S rRNA hybridization probes to describe natural communities of methanogens.
    Appl. Environ. Microbiol. 60:1232-1240.
    Raskin, L., D. Zheng, M. E. Griffin, P. G. Stroot, and P. Misra. 1995. Characterization
    59
    of microbial communities in anaerobic bioreactors using molecular probes.
    Antonie Van Leeuwenhoek. 68:297-308.
    R?lleke, S., G. Muyzer, C. Wawer, G. Wanner, and W. Lubitz. 1996. Identification of
    bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis
    of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ.
    Microbiol. 62:2059-2065.
    Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory
    Manual. Second Edition. Cold Spring Harbor Laboratory Press, Cold Spring
    Harbor.
    Santegoeds, C. M., T. G. Ferdelman , G. Muyzer, and D. de Beer. 1998. Structure and
    functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl.
    Environ. Microbiol. 64:3731-3739.
    Schmidt, T. M., E. F. DeLong, and N. R. Pace. 1991. Analysis of a marine
    picoplankton community by 16S rRNA gene cloning and sequencing. J.
    Bacteriol. 173:4371-4378.
    Sekiguchi Y., Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura.
    1998. Phylogenetic diversity of mesophilic and thermophilic granular sludge
    determined by 16S rRNA gene analysis. Microbiology 144:2655-2665.
    Sheffield, V. C., D. R. Cox, L. S. Lerman, and R. M. Myers. 1989. Attachment of a
    40-base pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the
    polymerase chain reaction results in improved detection of single-base changes.
    Proc. Natl. Acad. Sci. USA 86:232-236.
    Sheffield, V. C., J. S. Beck, E. M. Stone, and R. M. Myers. 1992. A simple and
    efficient method for attachment of a 40-base pair, GC-rich sequence to
    60
    PCR-amplified DNA. BioTechniques 12: 386-387.
    Snaidr, J., R. Amann, I. Huber, W. Ludwig, and K.-H. Schleifer. 1997. Phlogenetic
    analysis and in situ identification of bacteria in activated sludge. Appl. Environ.
    Microbiol. 63:2884-2896.
    Somiya, I., H. Tsuno, and M. Matsumoto. 1988. Phosphorus release-storage reaction
    and organics substrate behavior in biological phosphorus removal. Water
    Research 22:49-58.
    Stephen, J. R., A. E. McCaig, Z. Smith, J. I. Prosser, and T. M. Embley. 1996.
    Molecular diversity of soil and marine 16S rRNA gene sequences related to β–
    subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62:4147-4154.
    Stahl, D. A., B. Flesher, H. Mansfield, and L. Montgomery. 1988. Use of
    phylogenetically based hybridization probes for studies of ruminal microbial
    ecology. Appl. Environ. Microbiol. 54: 1079-1084.
    Swift, M. J. 1984. Microbial diversity and decomposer niches. In M. J. Klug and C. A.
    Reddy(eds.). Current perspectives in Microbial Ecology. American Society for
    Microbiology, Washington, DC, pp. 8-16.
    Teske, A., C. Wawer, G. Muyzer, and N. B. Ramsing. 1996. Distribution of
    sulfate-reducing bacteria in a stratified fjord (Mariager fjord, Denmark) as
    evaluated by most-probable-number counts and denaturing gradient gel
    electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ.
    Microbiol. 62:1405-1415.
    Vallaeys, T., E. Topp, and G. Muyzer. 1997. Evaluation of DGGE in the detection of
    16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbial.
    Ecol. 61:1444-1450.
    61
    Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi, and K.-H.
    Schleifer. 1994. Development of an rRNA-targeted oligouncleotide probe
    specific for the genus Acinetobacter and its application for in situ monitoring in
    activated sludge. Appl. Environ. Microbiol. 60:792-800.
    Wagner, M., G. Rath, R. Amann, H.-P. Koops, and K.-H. Schleifer. 1995. In situ
    identification of ammonia-oxidizing bacteria. System. Appl. Microbiol.
    18:251-264.
    Ward, D. M., M. J. Ferris, S. C. Nold , and M. M. Bateson. 1998. A natural view of
    microbial biodiversity within hot spring cyanobacterial mat communities.
    Microbial. Mol. Boil. Rev. 62:1353-1370.
    Ward, D. M., R. Weller, and M. M. Bateson. 1990. 16S rRNA sequences reveal
    numerous uncultured microorganisms in a natural community. Nature 344:63-65.
    Watanabe, K., M. Teramoto, H. Futamata, and S. Harayama. 1998. Molecular
    detection, isolation, and physiological characterization of functionally dominant
    phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol.
    64:4396-4402.
    Wareham, D. G., K. J. Hall, and D. S. Mavinic. 1993. Real-time control of
    aerobic-anoxic sludge digestion using ORP. J. Environmental Engineering
    119:120-136.
    Wilson, I. G. 1997. Inhibition and facilitation of nucleic acid amplification. Appl.
    Environ. Microbiol. 63:3741-3751.
    Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221-271.
    Zhang, T., and H. H. P. Fang. 2000. Digitization of DGGE (denaturing gradient gel
    electrophoresis) profile and cluster analysis of microbial communities.
    62
    Biotechnngy Letters. 22:399-405.
    朱玉賢、李毅,1999,「現代分子生物學」,藝軒圖書出版社。
    余瑞芳,1998,「連續流廢水處理系統操作之自動化與最佳化之研究」,國立中
    央大學環境工程研究所博士論文。
    呂學智、廖述良、余瑞芳、陳萬原,1995,「單槽連續流回分式活性污泥系統
    自動化監控之初步探討-以ORP、pH 為監控參數之探討」,第二十屆廢水
    處理技術研討會論文集,第2-69-2-75 頁。
    卓伯全、張鎮南,1996,「以連續批分式接觸材程序分解含高氮有機物之研究」,
    第二十一屆廢水處理技術研討會論文集,第176-183 頁。
    張鎮南、陳婉如,1994,「以作為連續回分式活性污泥法去除含碳氮磷化物自
    動控制之初探」,第十九屆廢水處理技術研討會論文集,第217-226 頁。
    張鎮南、余瑞芳、陳婉如,1993,「好養生物處理系統中ORP 控制技術可行性
    研究」,第十八屆廢水處理技術研討會論文集,第317-330 頁。
    陳萬原,1996,「單槽連續進流回分式活性污泥系統自動監控策略之研究---以
    ORP、pH 為監控參數」,國立中央大學環境工程研究所碩士論文。
    楊素禎,1998,「單槽連續進流回分式活性污泥系統處理動態進流污水自動控
    制之研究」,國立中央大學環境工程研究所碩士論文。
    蘇慧慈,1996,「原位分子生物學技術」,徐氏基金會。

    QR CODE
    :::