跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳瑋鑫
Wei-Hsin Chen
論文名稱: 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究
The Study of Digital Optical Phase Conjugation and Novelty Filtering Based on Kitty Self-Pumped Phase Conjugator
指導教授: 孫慶成
Ching-Cherng Sun
陳思妤
Szu-Yu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 81
中文關鍵詞: 小貓自泵相位共軛鏡相位共軛數位光學相位共軛時間微分
外文關鍵詞: Kitty self-pumped phase conjugate mirror, phase conjugation, digital optical phase conjugation, novelty filter
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出將小貓自泵相位共軛鏡應用在數位光學相位共軛器之建立與利用其來建構相位共軛時間微分器;藉由小貓自泵相位共軛鏡所具備之共軛訊號無像差及快速穩定等特性,我們得以建立高效能數位光學相位共軛器,與文獻上所提方法比較,其可克服各文獻方法之缺點;此外,結合電光調製器與小貓自泵相位共軛鏡,我們發展出一套相位共軛時間微分器,並將其用來做自追蹤,及在散射物體裡面產生聚焦訊號。


    In this thesis, we propose a new method for the alignment of a digital optical phase conjugator (DOPC) and the design of a phase conjugate novelty filter based on the Kitty self-pumped phase conjugate mirror (Kitty-SPPCM). Kitty-SPPCM has advantages such like short response time and insensitivity to the environment. Our method of DOPC alignment includes all benefits for DOPC from various literature methods. Additionally, we design a phase conjugate novelty filter with Kitty-SPPCM and electro-optic modulator (EOM). In this research, we apply the phase conjugate novelty filter to do self-tracking and produce a focal point inside diffuse objects.

    摘要 i ABSTARCT ii 誌謝 iii 目錄 v 圖索引 viii 表索引 xi 第一章 緒論 1 1.1 研究動機與挑戰 1 1.2 OPC之發展 3 1.3 DOPC之發展與應用 4 1.3.1 Yang團隊於2010年建立之DOPC 6 1.3.2 Yang團隊於2012年建立之DOPC 9 1.3.3 Feld團隊建立之DOPC 10 1.3.4 各DOPC之優劣比較 13 1.4 光學時間微分器之發展與應用 15 1.5 論文大綱與安排 17 第二章 原理 18 2.1 全像術 18 2.2 Whittaker-Shannon取樣定理與Space-bandwidth product 20 2.3 Cat-SPPCM 22 2.4 Kitty-SPPCM 24 2.5 散射係數μs、吸收係數μa與總衰減係數μt 26 第三章 DOPC之建立 30 3.1 Kitty-SPPCM於DOPC之對位 30 3.2 DOPC相位分布擷取與共軛訊號的產生 35 3.3 第一版DOPC架構測試 37 3.4 球面波照射SLM產生對位影像以增加對位時的縱向精確度 41 3.5 利用Kitty-SPPCM偵測讀取光以改善DOPC效能 48 3.6 DOPC效能測試 55 第四章 相位共軛時間微分器 60 4.1 相位共軛時間微分器之建立與自追蹤 60 4.2 利用相位共軛時間微分器在散射物質內部聚焦 67 第五章 結論 70 參考文獻 71 中英文名詞對照表 76

    1. A. E. Chiou, T.-Y. Chang, and M. Khoshnevisar, "High-speed photorefractive phase conjugator with wide intensity dynamic range and wide field of view," in OSA Annual Meeting, Vol. 15, 1990 OSA Technical Digest Series, (Optical Society of America, 1990), p. 40.
    2. M. Cui and C. Yang, "Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation," Opt. Express 18, 3444-3455 (2010).
    3. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley & Sons, New York, 1993).
    4. M. Fink, "Time reversal of ultrasonic fields. I. Basic principles," IEEE Trans. Ultrason., Ferroelectr., Freq. Control 39, 555-566 (1992).
    5. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, "Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light," Nat. Commun. 3, 928 (2012).
    6. T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, "Digital optical phase conjugation for delivering two-dimensional images through turbid media," Sci. Rep. 3, 1909 (2013).
    7. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," Nat. Photonics 2, 110-115 (2008).
    8. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 (1966).
    9. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, "Holographic storage in lithium niobate," Appl. Phys. Lett. 13, 223 (1968).
    10. F. S. Chen, "Optical induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389 (1969).
    11. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949 (1979).
    12. J. Feinberg, "Asymmetric self-defocusing of an optical beam from the photorefractive effect," J. Opt. Soc. Am. 72, 46-51 (1982).
    13. P. Yeh, "Two-wave mixing in nonlinear media," IEEE J. Quant. Electron. 25, 484-519 (1989).
    14. A. Yariv and D. M. Pepper, "Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing," Opt. Lett. 1, 16-18 (1977).
    15. M. Cronin-Golomb, J. O. White, B. Fischer, and A. Yariv, "Exact solution of a nonlinear model of four-wave mixing and phase conjugation," Opt. Lett. 7, 313-315 (1982).
    16. R. A. Fisher, Optical Phase Conjugation (Academic Press, New York, 1983).
    17. C.-C. Sun, R.-H. Tsou, W. Shen, H.-H. Chang, J.-Y. Chang, and M.-W. Chang, "Shearing interferometer with a Kitty self-pumped phase-conjugate mirror," Appl. Optics 35, 1815-1819 (1996).
    18. W.-C. Su, C.-C. Sun, Y.-C. Chen, and Y. Ouyang, "Duplication of phase key for random-phase-encrypted volume holograms," Appl. Optics 43, 1728-1733 (2004).
    19. C.-C. Sun and W.-C. Su, "Three-dimensional shifting selectivity of random phase encoding in volume holograms," Appl. Optics 40, 1253-1260 (2001).
    20. C.-C. Sun, S. Yeh, M.-W. Chang, and K. Y. Hsu, "Optimal incident conditions for a Cat-type self-pumped phase-conjugate mirror," Appl. Optics 31, 5769-5772 (1992).
    21. B. Wang, C.-C. Sun, W.-C. Su, and A. E. Chiou, "Shift-tolerance property of an optical double-random phase-encoding encryption system," Appl. Optics 39, 4788-4793 (2000).
    22. W.-C. Su, Y.-W. Chen, Y. Ouyang, C.-C. Sun, and B. Wang, "Optical identification using a random phase mask," Opt. Commun. 219, 117-123 (2003).
    23. C.-C. Sun, W.-C. Su, B. Wang, and A. E. Chiou, "Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm," Opt. Commun. 191, 209-224 (2001).
    24. H. F. Yau, H. C. Kung, H. Y. Lee, C. C. Sun, T. C. Chen, C. C. Chang, Y. P. Tong, and J. Chen, "Ordinary polarized phase conjugator using the photovoltaic effect," Opt. Commun. 184, 257-263 (2000).
    25. J. Feinberg, "Self-pumped, continuous-wave phase conjugator using internal reflection," Opt. Lett. 7, 486-448 (1982).
    26. J. O. White, M. Cronin-Golomb, B. Fischer, and A. Yariv, "Coherent oscillation by self‐induced gratings in the photorefractive crystal BaTiO3," Appl. Phys. Lett. 40, 450-452 (1982).
    27. A. E. Chiou, "Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects," Proc. IEEE 87, 2074-2085 (1999).
    28. M. Cui and C. Yang, "Turbidity suppression by optical phase conjugation using a spatial light modulator," California Institute of Technology, US Patent US20110122416 A1 (2011).
    29. C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, "Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle," Opt. Express 18, 20723-20731 (2010).
    30. C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, "Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media," Opt. Express 18, 12283-12290 (2010).
    31. X. Yang, C.-L. Hsieh, Y. Pu, and D. Psaltis, "Three-dimensional scanning microscopy through thin turbid media," Opt. Express 20, 2500-2506 (2012).
    32. I. M. Vellekoop, M. Cui, and C. Yang, "Digital optical phase conjugation of fluorescence in turbid tissue," Appl. Phys. Lett. 101, 081108 (2012).
    33. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, "Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)," Nat. Photonics 7, 300-305 (2013).
    34. K. Si, R. Fiolka, and M. Cui, "Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation," Nat. Photonics 6, 657-661 (2012).
    35. Y. M. Wang and C. Yang, "Acoustic-assisted iterative wave form optimization for deep tissue focusing," California Institute of Technology, US Patent US20120070817 A1 (2012).
    36. M. Jang, A. Sentenac, and C. Yang, "Optical phase conjugation (OPC)-assisted isotropic focusing," Opt. Express 21, 8781-8792 (2013).
    37. M. Cui and C. Yang, "Optical phase conjugation 4 pi microscope," California Institute of Technology, US Patent US20110109962 A1 (2011).
    38. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, "Focusing and scanning light through a multimode optical fiber using digital phase conjugation," Opt. Express 20, 10583-10590 (2012).
    39. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, "High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber," Biomed. Opt. Express 4, 260-270 (2013).
    40. D. Z. Anderson, D. M. Lininger, and J. Feinberg, "Optical tracking novelty filter," Opt. Lett. 12, 123-125 (1987).
    41. D. Gabor, G. W. Stroke, R. Restrick, A. Funkhouser, and D. Brumm, "Optical image synthesis (complex amplitude addition and subtraction) by hollographic fourier transformation," Phys. Lett. 18, 116-118 (1965).
    42. A. E. Chiou and P. Yeh, "Parallel image subtraction using a phase-conjugate Michelson interferometer," Opt. Lett. 11, 306-308 (1986).
    43. M. Cronin-Golomb, A. M. Biernacki, C. Lin, and H. Kong, "Photorefractive time differentiation of coherent optical images," Opt. Lett. 12, 1029-1031 (1987).
    44. V. V. Krishnamachari, O. Grothe, H. Deitmar, and C. Denz, "Novelty filtering with a photorefractive lithium–niobate crystal," Appl. Phys. Lett. 87, 071105 (2005).
    45. M. Woerdemann, F. Holtmann, and C. Denz, "Full-field particle velocimetry with a photorefractive optical novelty filter," Appl. Phys. Lett. 93, 021108 (2008).
    46. V. V. Krishnamachari, Photorefractive novelty filter microscope: The system and its applications (Cuvillier Verlag, Göttingen, 2005).
    47. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
    48. E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1128 (1962).
    49. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with continuous-tone objects," J. Opt. Soc. Am. 53, 1377-1381 (1963).
    50. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
    51. W.-F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quant. Electron. 26, 2166-2185 (1990).
    52. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
    53. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
    54. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzue, "Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics," Opt. Express 16, 16711-16722 (2008).
    55. E. J. McDowell, M. Cui, I. M. Vellekoop, V. Senekerimyan, Z. Yaqoob, and C. Yang, "Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation," J. Biomed. Opt. 15, 025004 (2010).
    56. H. Liu, X. Xu, P. Lai, and L. V. Wang, "Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths," J. Biomed. Opt. 16, 086009 (2011).
    57. P. Lai, X. Xu, H. Liu, and L. V. Wang, "Time-reversed ultrasonically encoded optical focusing in biological tissue," J. Biomed. Opt. 17, 030506 (2012).
    58. P. Lai, X. Xu, H. Liu, Y. Suzuki, and L. V. Wang, "Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media," J. Biomed. Opt. 16, 080505 (2011).
    59. X. Xu, H. Liu, and L. V. Wang, "Time-reversed ultrasonically encoded optical focusing into scattering media," Nat. Photonics 5, 154-157 (2011).

    QR CODE
    :::