| 研究生: |
劉俊宏 Chun-Hung Liu |
|---|---|
| 論文名稱: |
超透鏡與突破繞射極限之研究 The research of superlens and breaking diffraction limit |
| 指導教授: |
李正中
Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 繞射極限 、超穎材料 、表面電漿 、雙曲材料 |
| 外文關鍵詞: | diffraction limit, metamaterials, surface plasmon, hyperbolic metamaterials |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於光的波動特性,一般光學系統之空間解析度受繞射極限的影響而無法辨析大小小於波長的二分之一的物體,此乃因為帶有細節訊號的高空間頻率訊號為指數衰減的倏逝波,所以於本文中探討的超透鏡則可以突破繞射極限,來達到次波長成像。
本文分兩部分,分別為介電質∕金屬膜層堆疊的三層超透鏡和多層超透鏡,並利用數值模擬軟體COMSOL Multiphysics做電磁模擬並對此進行分析,在三層超透鏡本文去比較不同膜層厚度對次波長成像之影響;而多層超透鏡,本文分別探討其不同介電質∕金屬之組合、不同膜層厚度和不同對數的影響下對其影響。經由模擬後可得三層超透鏡ZnO(20 nm)∕Ag(30 nm)∕ZnO(20 nm)在光波長365 nm,解析度可以突破繞射極限達到80 nm,而多層超透鏡Ag(12 nm)/(Ta2O5(8 nm)/Ag(12 nm))*3之解析度能夠突破繞射極限達到40 nm。
Based on the characteristic of waves of light, the spatial resolution in a general optical system is limited by the diffraction limit and it cannot distinguish objects whose size is less than one-half the wavelength. This is because the evanescent waves, which are high spatial frequency signals which carry the detailed signals, exponentially decay. The superlens which discussed in this thesis can break the diffraction limit to achieve sub-wavelength imaging.
This thesis is divided into two parts. It is a three layer superlens and multilayer superlens which are layered metal-dielectric systems. The numerical simulation software COMSOL Multiphysics will be used for electromagnetic simulation. In the part of three layer superlens, we adjust the film thickness and compare the effect in sub-wavelength imaging. And in the part of multilayer superlens, we discuss the effect of different combinations and different pairs between dielectric and metal, and different film thicknesses. After simulation,we adopted a three layer superlens ZnO(20 nm)/Ag(30 nm)/ZnO (20 nm) in sub-wavelength imaging at wavelength of 365 nm , and it can break the diffraction limit down to 80 nm, and the resolution of multilayer superlens Ag(12 nm)/(Ta2O5(8 nm)/Ag(12 nm))*3 which can break the diffraction limit reach to 40 nm.
1 Synge, E. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 6, 356-362 (1928).
2 Veselago, V. G. Electrodynamics of substances with simultaneously negative and. Usp. Fiz. Nauk 92, 517 (1967).
3 Pendry, J. B., Holden, A., Stewart, W. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Physical review letters 76, 4773 (1996).
4 Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniques 47, 2075-2084 (1999).
5 Pendry, J. B. Negative refraction makes a perfect lens. Physical review letters 85, 3966 (2000).
6 Fang, N., Lee, H., Sun, C. & Zhang, X. Sub–diffraction-limited optical imaging with a silver superlens. Science 308, 534-537 (2005).
7 Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595-1595 (2006).
8 Durant, S., Liu, Z., Steele, J. M. & Zhang, X. Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. JOSA B 23, 2383-2392 (2006).
9 Liu, Z. et al. Far-field optical superlens. Nano letters 7, 403-408 (2007).
10 Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Optics express 14, 8247-8256 (2006).
11 Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. science 315, 1686-1686 (2007).
12 Chen, X. et al. Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial. ACS nano 11, 9863-9868 (2017).
13 Wood, R. W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4, 396-402 (1902).
14 Fano, U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA 31, 213-222 (1941).
15 Ritchie, R. H. Plasma losses by fast electrons in thin films. Physical review 106, 874 (1957).
16 Stern, E. & Ferrell, R. Surface plasma oscillations of a degenerate electron gas. Physical Review 120, 130 (1960).
17 Hessel, A. & Oliner, A. A new theory of Wood’s anomalies on optical gratings. Applied optics 4, 1275-1297 (1965).
18 Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216, 398-410 (1968).
19 Drude, P. Zur elektronentheorie der metalle. Annalen der physik 306, 566-613 (1900).
20 邱國斌、蔡定平. 金屬表面電漿簡介. 物理雙月刊 廿八卷二期, 14 (2006).
21 Bozhevolnyi, S. I. & Søndergaard, T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Optics express 15, 10869-10877 (2007).
22 高宗聖、蔡定平. 近場光學新視界. 科學發展月刊 386 期, 4 (2005).
23 Michalet, X. & Weiss, S. Using photon statistics to boost microscopy resolution. Proceedings of the National Academy of Sciences 103, 4797-4798 (2006).
24 Lu, D. & Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nature communications 3, 1-9 (2012).
25 Lee, H., Liu, Z., Xiong, Y., Sun, C. & Zhang, X. Development of optical hyperlens for imaging below the diffraction limit. Optics express 15, 15886-15891 (2007).
26 Schilling, A., Schilling, J., Reinhardt, C. & Chichkov, B. A superlens for the deep ultraviolet. Applied Physics Letters 95, 121909 (2009).
27 JunáLee, W. & OukáKim, S. Subwavelength imaging in the visible range using a metal coated carbon nanotube forest. Nanoscale 6, 5967-5970 (2014).
28 Rogers, E. T. et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nature materials 11, 432-435 (2012).
29 Regan, C. J., Rodriguez, R., Gourshetty, S. C., de Peralta, L. G. & Bernussi, A. A. Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses. Optics Express 20, 20827-20834 (2012).
30 Casse, B. et al. Super-resolution imaging using a three-dimensional metamaterials nanolens. Applied Physics Letters 96, 023114 (2010).
31 You, S., Kuang, C. & Zhang, B. Resolution criteria in double-slit microscopic imaging experiments. Scientific reports 6, 33764 (2016).
32 Goodman, J. W. Introduction to Fourier optics. (Roberts and Company Publishers, 2005).
33 Wang, M. & Pan, N. Predictions of effective physical properties of complex multiphase materials. Materials Science and Engineering: R: Reports 63, 1-30 (2008).
34 Jen, Y.-J. & Liu, W.-C. Design a Stratiform Metamaterial with Precise Optical Property. Symmetry 11, 1464 (2019).
35 Johnson, P. B. & Christy, R.-W. Optical constants of the noble metals. Physical review B 6, 4370 (1972).
36 Stelling, C. et al. Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells. Scientific reports 7, 1-13 (2017).
37 Rodríguez-de Marcos, L. V., Larruquert, J. I., Méndez, J. A. & Aznárez, J. A. Self-consistent optical constants of SiO 2 and Ta 2 O 5 films. Optical Materials Express 6, 3622-3637 (2016).
38 Rodríguez-de Marcos, L. V., Larruquert, J. I., Méndez, J. A. & Aznárez, J. A. Self-consistent optical constants of MgF 2, LaF 3, and CeF 3 films. Optical Materials Express 7, 989-1006 (2017).
39 Boidin, R., Halenkovič, T., Nazabal, V., Beneš, L. & Němec, P. Pulsed laser deposited alumina thin films. Ceramics International 42, 1177-1182 (2016).
40 Bodurov, I., Vlaeva, I., Viraneva, A., Yovcheva, T. & Sainov, S. Modified design of a laser refractometer. power electronics 2, 1 (2016).