| 研究生: |
戴廷諺 Ting-Yen Tai |
|---|---|
| 論文名稱: |
以三軸直剪試驗探討高嶺土的摩擦行為 Development of the Triaxial Direct-Shear Experiments to Investigate Frictional Behaviors of the Synthetic Kaolinite Gouges |
| 指導教授: |
郭思廷
Szu-Ting Kuo 郭力維 Li-Wei Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 三軸摩擦實驗 、直剪式樣本組合 、速度步驟實驗 、斷層穩定性 |
| 外文關鍵詞: | confined direct shear experiments, velocity-step tests, rate-and-state friction law (RSF), fault-slip instability |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了響應我國推動的2050 淨零排放目標,增強型地熱系統(Enhanced Geothermal System; EGS)成為乾淨能源的選項之一。由於EGS 相關技術涉及向地底注入流體,這可能導致影響地下孔隙水壓力以及斷層穩定性,進而造成不穩定滑移並增加地震誘發之風險。而過去研究指出地震誘發過程可以透過實驗模擬摩擦行為,其中斷層摩擦組成律(rate-and-state friction law; RSF)被廣泛應用於斷層在準靜態(quasi-static)滑移
速率的力學行為,對於瞭解斷層不穩定性與促進EGS 安全發電有高度價值。本研究旨在建立實驗室三軸岩石力學摩擦試驗的技術,使用中央大學的GCTS 自動伺服控制三軸岩石測試系統(GCTS RTX-1000)進行直剪式樣本組合的三軸摩擦實驗。本研究使用高嶺土粉末作為合成斷層泥之樣本,將其夾於兩個一英寸之L 形不鏽鋼塊之間進行摩擦實驗,由圍壓施加正應力,而軸向壓力施加剪應力。本研究共進行四種不同條件:高水壓與低水壓飽和排水實驗(saturated drained with pore pressure control)、飽和不排水實驗(saturated undrained without pore pressure control)、以及室內溼度乾粉(dry)實驗。所有條件之有效正向應力(effective normal stress)皆為10 MPa,水壓控制實驗的圍壓(confining pressure; Pc)及水壓(pore pressure; Pp)分別為20 及10 MPa或分別為10.5 及0.5 MPa;其餘兩種實驗則不使用水壓控制系統,圍壓為10 MPa。經過八至十二小時於目標圍壓和水壓等待斷層泥中的水壓達到平衡後,我們使用外部荷載差度變壓器(DCDT)控制滑移速率。摩擦實驗剛開始的速率設置為1 μm/s,當軸差應力(deviator stress; Sd)自背景值明顯增加後表示斷層泥開始剪切,此時速率會降低至0.1 μm/s,直到位移達1.5 mm。之後速率會以10 為倍數進行增減調整(例:0.15、0.015、0.15 μm/s),每一步驟設定滑動距離為0.3 mm。實驗結果顯示高水壓飽和排水實驗的有效摩擦係數在達到穩態後為0.27,而所有實驗均呈現速度強化行為。而RSF參數使用RSFit3000(Skarbek & Savage, 2019)並假設彈性勁度k = 0.02 μm⁻¹進行擬合。擬合結果顯示a-b 值為0.006 至0.011,而含水樣本高於室內溼度乾樣本。Dc 值(特徵滑移距離;Characteristic distance)範圍較廣,從4 至40 μm。而擬合結果中決定係數(R2)顯示從0.44 至0.95 不等,這表示部分數據過於分散,可能來自於Sd 的震盪較大。我們可以適當的調整擷取頻率及使用移動平均方法減少雜訊,以獲得更好的擬合結果。另外,儀器使用外部荷重元(External load cell)量測荷重,因此我們對儀器進行O-ring 摩擦校正實驗,觀察儀器本身對於數據量測的影響並校正實驗結果。結果顯示儀器本身僅對於速度步驟中慢到快(0.015 至0.15 μm/s)提升了至少0.1 kN,扣除儀器影響重新擬合後a-b 值降低為0.004 至0.008,這樣的數據也更接近前人研究結果(飽和水壓實驗中為0.002-0.006)。我們預計透過推動並完善這樣的實驗方法,未來將可運用於地熱能源發展中,作為針對斷層穩定性以及潛在風險的評估分析。
In response to the 2050 net-zero emission in Taiwan, identifying potential sites for
exploration of Enhanced Geothermal System (EGS) has become critical. The technology
involves fluid injections into the subsurface, which can cause an increase in pore-fluid
pressure and and potentially lead to unstable slip, consequently increasing the risk of inducing
seismicity. Recent studies have applied the rate-and-state friction law (RSF) in modeling fault
slip behavior under quasi-static slip conditions to better understand mechanisms of induced
seismicity during EGS operations. To develop experimental approaches to understand faultslip
behaviors, we conducted confined direct-shear tests using the GCTS servo-controlled
Triaxial Rock Testing System (GCTS RTX-1000) at National Central University, Taiwan. We
used kaolinite powder as synthetic gouge samples that were sandwiched between two 1-inch
L-shaped stainless-steel platens. We conducted four types of experiments: saturated drained
with pore pressure (Pp) control at either high or low Pp, saturated undrained without pore
pressure control, dry sample at room humidity. All experiments were deformed at room
temperature under a constant effective normal stress of 10 MPa. For experiments with Pp
control, confining pressure (Pc) and Pp were maintained at either 20 and 10 MPa or 10.5 and
0.5 MPa, respectively. The saturated undrained and dry experiments were conducted without
Pp control with Pc maintained at 10 MPa. All experiments were performed at the same
effective pressure (Pc - Pp). After 8 –12 hours of compaction to achieve equilibrium in Pp
within the fault gouge, we applied a load-point displacement rate of 1 μm/s controlled by the
load frame displacement transducer (DCDT). The deviator stress (Sd) would significantly
increase from the background level until the loading piston contacted with the L-shape platen,
marking the onset of fault gouge shearing. The velocity was then decreased to 0.1 μm/s until
1.5 mm of displacement was reached. The velocity was then adjusted in a 10-fold step
sequence (e.g., 0.15, 0.015, 0.15 μm/s), with each test targeted to reach 0.3 mm in sheardisplacement. Each experiment was calibrated for the effects of friction from the sealing
stacks on the external load measurement. The results show that the effective friction
coefficient reached a steady state of 0.27 under the experiments at Pp of 10 MPa, and all
experiments exhibit velocity-strengthening behavior. The RSF parameters were fit using
RSFit3000 (Skarbek & Savage, 2019) on datasets after moving averaging to reduce noises,
assuming system elastic stiffness of k = 0.02 μm⁻¹. The a-b values range from 0.006 to 0.011,
and characteristic distances (Dc) are approximately 4-40 μm. The coefficient of determination
(R²) of the fitting results varies between 0.44 and 0.95, where the lower R2 may be attributed
to oscillations in Sd. O-ring calibration experiments revealed a load increase of at least 0.1 kN
during velocity steps from 0.015 to 0.15 μm/s. After calibration, the recalculated a-b values
decreased to 0.004–0.008, which better aligns with previous studies (0.002–0.006 for
saturated conditions). We anticipate that our experimental approaches can be further applied
to provide a basis for evaluating fault-slip instability with geothermal development in Taiwan.
高櫸樹(2001)。黏土質斷層泥摩擦律特性初探。﹝碩士論文。國立臺灣大學﹞臺灣博
碩士論文知識加值系統。 https://hdl.handle.net/11296/2y3bu4。
莊志勇(2001)。斷層泥力學行為對斷層滑移機制之研究。﹝碩士論文。國立臺灣大
學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/a7cnpp。
Belzer, B. D., & French, M. E. (2024). Path and slip dependent behavior of shallow
subduction shear zones during fluid overpressure. Journal of Geophysical Research:
Solid Earth, 129(4), e2023JB027502.
Beynon, S. J., & Faulkner, D. R. (2020). Dry, damp, or drenched? The effect of water
saturation on the frictional properties of clay fault gouges. Journal of Structural Geology,
140, 104094.
Biot, M. A. (1941). General theory of three‐dimensional consolidation. Journal of applied
physics, 12(2), 155-164.
Brace, W. F., & Byerlee, J. D. (1966, September). Recent experimental studies of brittle
fracture of rocks. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-
66). ARMA.
Brace, W. F., & Martin Iii, R. J. (1968, September). A test of the law of effective stress for
crystalline rocks of low porosity. In International Journal of Rock Mechanics and
Mining Sciences & Geomechanics Abstracts (Vol. 5, No. 5, pp. 415-426). Pergamon.
Crawford, B. R., Faulkner, D. R., & Rutter, E. H. (2008). Strength, porosity, and permeability
development during hydrostatic and shear loading of synthetic quartz‐clay fault gouge.
Journal of Geophysical Research: Solid Earth, 113(B3).
Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive
equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161-2168.
Elsworth, D., Spiers, C. J., & Niemeijer, A. R. (2016). Understanding induced seismicity.
Science, 354(6318), 1380-1381.
Faulkner, D. R., Sanchez‐Roa, C., Boulton, C., & Den Hartog, S. A. M. (2018). Pore fluid
pressure development in compacting fault gouge in theory, experiments, and nature.
Journal of Geophysical Research: Solid Earth, 123(1), 226-241.
Ge, S., & Saar, M. O. (2022). Induced seismicity during geoenergy development—A
hydromechanical perspective. Journal of Geophysical Research: Solid Earth, 127(3),
e2021JB023141.
Gradmann, S., & Beaumont, C. (2012). Coupled fluid flow and sediment deformation in
margin‐scale salt‐tectonic systems: 2. Layered sediment models and application to the
northwestern Gulf of Mexico. Tectonics, 31(4).
Ikari, M. J., Carpenter, B. M., & Marone, C. (2016). A microphysical interpretation of rateand
state‐dependent friction for fault gouge. Geochemistry, Geophysics, Geosystems,
17(5), 1660-1677.
Ikari, M. J., Marone, C., & Saffer, D. M. (2011). On the relation between fault strength and
frictional stability. Geology, 39(1), 83-86.
Im, K., & Avouac, J. P. (2021). Tectonic tremor as friction-induced inertial vibration. Earth
and Planetary Science Letters, 576, 117238.
Ji, Y., Hofmann, H., Duan, K., & Zang, A. (2022). Laboratory experiments on fault behavior
towards better understanding of injection-induced seismicity in geoenergy systems.
Earth-Science Reviews, 226, 103916.
Logan, J. M., Dengo, C. A., Higgs, N. G., & Wang, Z. Z. (1992). Fabrics of experimental fault
zones: Their development and relationship to mechanical behavior. In International
geophysics (Vol. 51, pp. 33-67). Academic Press.
Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting.
Annual Review of Earth and Planetary Sciences, 26(1), 643-696.
McClure, M. W., & Horne, R. N. (2014). An investigation of stimulation mechanisms in
Enhanced Geothermal Systems. International Journal of Rock Mechanics and Mining
Sciences, 72, 242-260.
Nur, A., & Byerlee, J. (1971). An exact effective stress law for elastic deformation of rock
with fluids. Journal of geophysical research, 76(26), 6414-6419.
Paterson, M. S., & Wong, T. F. (2005). Experimental rock deformation: the brittle field (Vol.
348). Berlin: Springer.
Peng, Z., & Gomberg, J. (2010). An integrated perspective of the continuum between
earthquakes and slow-slip phenomena. Nature geoscience, 3(9), 599-607.
Robinson, R. G., & Allam, M. M. (1998). Effect of clay mineralogy on coefficient of
consolidation. Clays and clay minerals, 46(5), 596-600.
Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical
Research: Solid Earth, 88(B12), 10359-10370.
Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37-42.
Scholz, C. H. (2019). The mechanics of earthquakes and faulting. Cambridge university press.
Shimamoto, T., & Logan, J. M. (1981). Effects of simulated clay gouges on the sliding
behavior of Tennessee sandston. Tectonophysics, 75(3-4), 243-255.
Skarbek, R. M., & Savage, H. M. (2019). RSFit3000: A MATLAB GUI-based program for
determining rate and state frictional parameters from experimental data. Geosphere,
15(5), 1665-1676.
Tembe, S., Lockner, D. A., & Wong, T. F. (2010). Effect of clay content and mineralogy on
frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz,
illite, and montmorillonite. Journal of Geophysical Research: Solid Earth, 115(B3).
Terzaghi, K. (1943). Theoretical soil mechanics.
Tobin, K. L. (2024). A multiscale structural, kinematic, and mechanical investigation of the
San Andreas fault in the Mecca hills (Master’s thesis). University of Wisconsin-Madison,
Madison, Wisconsin, USA
Verberne, B. A., Spiers, C. J., Niemeijer, A. R., De Bresser, J. H. P., De Winter, D. A. M., &
Plümper, O. (2014). Frictional properties and microstructure of calcite-rich fault gouges
sheared at sub-seismic sliding velocities. Pure and Applied Geophysics, 171, 2617-2640.
Warr, L. N. (2022). Earth’s clay mineral inventory and its climate interaction: A quantitative
assessment. Earth-Science Reviews, 234, 104198.
Zhenhao, X. U., Tengfei, Y. U., Peng, L. I. N., & Shucai, L. I. (2023). Anomalous patterns of
clay minerals in fault zones. Engineering Geology, 325, 107279.
Zastrow, M. (2018). South Korea’s most-destructive quake probably triggered by geothermal
plant. Nature.