| 研究生: |
林育槿 Yu-Chin Lin |
|---|---|
| 論文名稱: |
以分離元素法與離心模型試驗探討順向坡滑動行為 |
| 指導教授: | 黃文昭 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 順向坡 、離心模型 、PFC3D 、尺寸效應 、滑動距離 |
| 外文關鍵詞: | Dip-slope, Centrifuge model test, PFC3D, scale effect, sliding distance |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣的地形以山地及丘陵所佔之面積最大,由於受到造山運動之影響,海拔3000公尺以之山地超過200座,因而台灣擁有為數不少之順向坡。在台灣,發生順向坡滑動之案例不少,如1997年林肯大郡地層滑動、2009年獻肚山山崩使小林村滅村及2010年國道三號3.1公里崩塌事件等,致使人們更重視順向坡滑動之行為。
本研究探討在台灣常見的砂頁岩互層組成之順向坡,運用分離元素法以及離心模型試驗進行模擬,針對厚薄岩層互層組成之順向坡進行研究。但相較於一般常見之砂頁岩順向坡,其砂頁岩之性質並不相同,本研究中未針對其材料之不同進行研究。將離心模型試驗之結果,對數值型進行校正,至離心模型試驗與數值模型結果吻合後,分析模型在不同尺度下滑動行為,釐清規模效應及影響順向坡滑動的因素(不同泡水高度)對順向坡穩定之影響,希望可瞭解不同尺度下順向坡的滑動行為。
綜合數值模擬的結果,結論如下:(1)在越大重力場下,即對應原型坡高越高情況下,No.3岩層泡水部分,因遇水弱化,其滑動量也持續增加,滑動影響範圍向上邊坡部分延伸。(2)在不同泡水高度狀況下,於加高水位前,No.3岩層滑動範圍較深,但延伸至上邊坡之距離較短;加高水位後,位移影響範圍較淺,但延伸至上邊坡之距離較長。(3)在孔隙率變化方面,不同泡水高度狀況下,於未加高水為前,坡趾泡水部分孔隙率變大;加高水位後,孔隙率反而降低。
In Taiwan, the mountains account for half of the areas in Taiwan. The mountains with altitude above 3,000 meters are more than 200. With abundant sedimentary environments in Taiwan, a lot of dip-slopes can be easily found in many regions. There are numerous dip-slope related disasters in recent years. For example, Linkendajun landslide in 1997, Hsiaoling landslide induced by 2009 Morakot Typhoon, Cidu section of Formosa Freeway landslide in 2010. Most of the above disasters are related to rainfalls, earthquakes and improper design of the stabilization system. It is crucial to understand the deformation and sliding behaviors of a dip slope when subjecting to triggering factors such as the above conditions.
In this study, we are going to discuss the deformation behaviors of dip-slopes characterized by interbedded sandstone and shale. In order to further realize dip-slope failure, this study simulates dip-slope sliding by using PFC3D and centrifuge models. The aim is to understand the dip-slope behaviors with different thicknesses of the layers, but in this study, we are not discussing layers with different material properties. In addition, we also simulate dip-slope sliding behaviors with different scales and boundary conditions, hoping to understand the sliding behaviors of dip-slopes.
According to the numerical simulations the results possesses the following characteristics: (1) Because the gravity increase and influenced by wet deterioration, the model will deform seriously. (2) In low water level, the sliding depth of formation No.3 is more deep and the range of sliding is less; In high water level, the sliding depth of formation No.3 is more shallow and the range of sliding is more. (3) In low water level, the porosity of toe of model become higher; In high water level, the porosity of toe of model become smaller.
參考文獻
1. 紀宗吉、林朝宗、劉桓吉,「林肯大郡地層滑動災變原因之探討」,地工技術,第68期,67-74頁,1998。
2. 紀宗吉,「全臺重大順向坡滑動歷史事件簿」,地質,第29卷,第2期,244-27,2010。
3. 唐昭榮、胡植慶、羅佳明、林銘郎,「遽變式山崩之PFC3D 模擬初探-以草嶺與小林村為例」,地工技術,第122 期,143-152 頁,2009。
4. 黃鑑水、陳勉銘、許銘義,「九份二山大山崩」,地工技術,第96期,79-86頁,2003。
5. 黄润秋,「中国西部地区典型岩质滑坡机理研究」,第四紀研究,第23卷,第6期,640-647頁,2003。
6. 莊庭鳳,「以分離元素法探討板岩邊坡變形機制」,國立高雄大學土木與環境工程所,碩士論文,2014。
7. 曾煒傑,「以分離元素法與離心模型模擬在不同尺度下順向坡滑動行為」,國立中央大學土木工程學系,碩士論文,2015。
8. 壽克堅、蘇苗彬、王建峰,「九份二山崩塌機制與殘坡問題探討」,地工技術,第87期,25-30頁,2001。
9. 羅佳明、鄭添耀、林彥享、蕭震洋、魏倫瑋、黃春銘、冀樹勇、林錫宏、林銘郎,「國道3號七堵順向坡滑動過程之動態模擬」,中華水土保持學報,第42卷,第3期,175-183頁,2011。
10. 行政院農業委員會,水土保持技術規範,2014。
11. 內政部營建署,建築技術規則,2015。
12. Chigira, M. “Long-term Gravitational deformation of rocks by mass rock creep”, Engineering Geology, vol.32, pp. 157-184 (1992).
13. Shou, K.J., Wang, C.F., “Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan,” Engineering Geology, vol.68, pp. 237-250 (2003).
14. Tang Chao-Lung, Hu Jyr-Ching, Lin Ming-Lang, Yuan Ren-Mao, Cheng Ching-Chuan, “The mechanism of the 1941 Tsaoling landslide, Taiwan insight from a 2D discrete element simulation,” Environmental Earth Sciences, vol. 70, pp. 1005-1009, DOI 10.1007/s12665-012-2190-1 (2012).
15. Itasca Consulting Group Inc. (2002) PFC3D (Particle Flow Code in 3 Dimensions). Version 3.0 Minneapolis, MN: ICG.