跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何承翰
Cheng-han Ho
論文名稱: 正交分頻多工存取在不完美通道狀態資訊下之資源分配
Resource Allocation with Imperfect CSI in OFDMA Environments
指導教授: 林嘉慶
Jia-chin Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 63
中文關鍵詞: 正交分頻多工存取資源分配無妒忌
外文關鍵詞: OFDMA, resource allocation, envy-free
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以往在正交分頻多工存取(orthogonal frequency division multiple access, OFDMA)環境下的資源分配(resource allocation)研究,大多假設可以獲得完美的通道狀態資訊(channel state information, CSI),然而由於存在通道估測誤差以及時間回覆延遲等原因,使得以上假設不符合實際情況,因此在不完美通道狀態資訊(imperfect CSI)下的資源分配演算法設計,在近年來獲得了較多的關注。本篇論文首先討論正交分頻多工存取環境,在完美通道狀態資訊下的Chunk 分配,接著將此技術應用於所提出之正交分頻多工存取環境,在不完美通道狀態資訊下的資源分配方式中,以簡化系統的運算次數。
    本文提出一種新的資源分配演算法,稱作無妒忌資源分配(envy-free resource allocation),此方法能夠降低使用者在正交分頻多工存取環境,因為資源分配不均而產生的妒忌行為。提出的演算法以最小化使用者彼此間分配到的平均資料率總和差異為目標,並確保每個分配的子載波能夠滿足位元錯誤率的限制條件。
    模擬結果顯示出,提出的演算法隨著可用來分配的Chunk 個數增加時,使用者彼此
    之間分配到的平均資料率總和差異數值也會逐漸變小,代表著使用者產生妒忌行為的可能性也越小。另外當可用來分配的Chunk 個數夠多時,兩個使用者在不同的可加性錯誤情形下的效能表現,也能夠接近兩個使用者在相同的可加性錯誤情形下的效能表現。


    The design of resource allocation in OFDMA environments have been assumed that perfect channel state information (CSI) can be estimated in previous researches. However, it is rarely possible to get perfect CSI due to channel estimation error and feedback delay. Hence,the algorithm to solve imperfect CSI draws much more attention. In order to reduce computation amount for system, we have discussed the chunk allocation technique in OFDMA environments with perfect CSI and combine this technique into our proposed scheme in OFDMA environments with imperfect CSI.
    In this thesis, we proposed a novel resource allocation algorithm called “envy-free resource allocation” which could reduce the envy behavior among users due to unequal allocated resources in OFDMA environments. The proposed scheme minimizes the total average rate difference between each pair of users, subject to average BER constraints for each allocated subcarrier.
    Simulation results show that, a larger allocated number of chunks could guarantee a smaller total average rate difference between users, resulting in a much smaller chance for users to envy each other. Furthermore, when the allocated chunk number is big enough, then the performance of users with unequal additive error is close to users with equal additive error.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 正交分頻多工存取與長程演進 1 1.2 研究背景與目的 5 1.3 Chunk 基礎的資源分配 6 第二章 通道分析與傳統資源分配技術 9 2.1 完美通道狀態資訊定義 9 2.2 不完美通道狀態資訊定義 12 2.3 位元錯誤率為基礎的Chunk分配演算法 16 2.3.1 位元錯誤率為基礎的單載波基礎分配 17 2.3.2 位元錯誤率為基礎的Chunk分配 19 2.4 模擬結果與討論 21 2.4.1 完美通道狀態資訊模擬環境 22 2.4.2 不完美通道狀態資訊模擬環境 24 第三章 無妒忌資源分配演算法 26 3.1 以使用者為中心之資源分配概念與數學分析 26 3.2 無妒忌單載波分配 28 3.3 無妒忌Chunk分配 30 3.4 模擬結果與討論 34 3.4.1 通道估測誤差之不完美通道狀態資訊模擬環境 35 3.4.2 可加性錯誤之不完美通道狀態資訊模擬環境 40 第四章 結論 49 參考文獻 51

    [1] 3GPP, TS 36.211(V8.5.0), “Physical Channels and Modulation,” Mar. 2009.
    [2] C. Y. Wong, R. Cheng, K. Lataief, and R. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Select. Areas Commun., vol. 17, no. 10, pp. 1747-1758, Oct. 1999.
    [3] D. Kivanc, G. Li, and H. Liu, “Computationally efficient bandwidth allocation and power control for OFDMA,” IEEE Trans. Wireless Commun., vol. 2, no. 6, pp. 1150-1158, Nov. 2003.
    [4] L. Hoo, B. Halder, J. Tellado, and J. Cioffi, “Multiuser transmit optimization for multicarrier broadcast channels: asymptotic FDMA capacity region and algorithms,” IEEE Trans. Commun., vol. 52, no. 6, pp. 922-930, June 2004.
    [5] Z. Shen, J. Andrews, and B. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2726-2737, Nov. 2005.
    [6] G. Song and Y. Li, “Cross-layer optimization for OFDM wireless networks-part II: algorithm development,” IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 625-634, Mar. 2005.
    [7] K. Seong, M. Mohseni, and J. Cioffi, “Optimal resource allocation for OFDMA downlink systems,” in Proc. IEEE International Symp. Inform. Theory, Seattle, WA, July 2006, pp. 1394-1398.
    [8] I. C. Wong and B. L. Evans, “Optimal OFDMA resource allocation with linear complexity to maximize ergodic rates,” IEEE Trans. Wireless Commun., 2008, to appear.
    [9] H. Zhu and J. Wang, “Chunk-based resource allocation for OFDMA systems-Part I: chunk allocation,” IEEE Trans. Commun., vol. 57, no. 9, pp. 2734-2744, Sept. 2009.
    [10] H. Zhu and J. Wang, “Chunk-based resource allocation in OFDMA systems-Part II: Joint chunk, power and bit allocation,” IEEE Trans. Commun., vol. 60, no. 2, pp. 499 509, Feb. 2012.
    [11] Y. Rong, S. A. Vorobyov, A. B. Gershman, “Adaptive OFDM techniques with one-bit-per-subcarrier channel-state feedback,” IEEE Trans. Commun., vol. 54, no. 11, Nov. 2006.
    [12] I. C. Wong and B. L. Evans, “Optimal resource allocation in the OFDMA downlink with imperfect channel knowledge,” IEEE Trans. Commun., vol. 57, no. 1, pp. 232241, Jan. 2009.
    [13] A. Ahmad and M. Assaad, “Optimal resource allocation framework for downlink OFDMA system with channel estimation error,” in Proc. IEEE Wireless Commun. and Networking Conf., pp. 1-5, April. 2010.
    [14] J. Jiang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Select. Areas Commun., vol. 21, no. 2, pp. 171-178, Feb. 2003.
    [15] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Select. Areas Commun., vol. 17, no. 10, pp. 1747-1758, Oct. 1999.
    [16] S. T. Chung and A. J. Goldsmith, “Degrees of freedom in adaptive modulation: a unified view,” IEEE Trans. Commun., vol. 49, no. 9, pp. 1561-1571, Sept. 2001.
    [17] J.-C. Lin, “Chapter 2: Channel Estimation for Wireless OFDM Communications,” Communications and Networking, SCIYO, (ISBN: 978-953-307-114-5).
    [18] C.-S. Lin, C.-K. Sun, J.-C. Lin and B.-C. Chen, “Performance evaluations of channel estimations in IEEE 802.11p environments,” Telecommunication Systems, Springer Netherlands, pp. 1-12, Jun. 2011.
    [19] J.-C. Lin, “Least-squares channel estimation for mobile OFDM communication on time-varying frequency-selective fading channels,” IEEE Trans. Vehic. Technol., vol. 57, no. 6, pp. 3538-3550, Nov. 2008.
    [20] J.-C. Lin, “Least-squares channel estimation assisted by self-interference cancellation for mobile PRP-OFDM applications,” IET Commun., vol. 3, iss. 12, pp. 1907-1918, Dec. 2009.
    [21] J. G. Proakis, Digital Communications. McGraw-Hill, 2001.
    [22] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.
    [23] S. J. Brams and A. D. Taylor, The Win-Win Solution: Guaranteeing Fair Shares to Everybody.
    W. W. Norton & Company ,Oct. 2000.

    QR CODE
    :::