跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊凱鈞
Kai-Chun Yang
論文名稱: 噴霧熱裂解法製備Zn-doped n-type CuInS2 薄膜及其光電化學性質分析
Photoelectrochemical performance of Zn-doped n-type CuInS2 thin film prepared by spray pyrolysis method
指導教授: 李岱洲
Tai-Chou Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 薄膜噴霧熱裂解法光電化學
外文關鍵詞: CuInS2
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用噴塗法,改變不同[Cu]/[In]比例之前驅物濃度,在S 充
    足的情況下,沉積在ITO 導電玻璃上,之後經由熱處理500 oC 製備
    出n-type CuInS2 薄膜,並且摻雜不同濃度之Zn,希望能提升光電流
    表現及調整能階位置來做為p-n junction 能階設計的材料。結構分析
    顯示為正方晶系黃銅礦結構的CuInS2,且隨著Cu 的量增加,結晶性
    越高,另外無雜相的生成。在紫外光可見光波段,吸收係數大約在104
    ~ 105 之間,是很理想的光吸收材料,而各比例之能隙值變化不大,大
    約介於1.5 ~ 1.55 eV 之間。而光電化學性質中,在電壓= 1.23 V vs.
    RHE 時,電解質為犧牲試劑的情況下,n 型光電流表現能達到2.24
    mA/cm2。n-type CuInS2 摻雜Zn 後,由XRD 觀察結晶相並沒有改變,
    也無雜相生成。在光電流表現上,沒有達到提升光電流的效果。由UVvis
    分析,隨著Zn 摻雜量的上升,能隙值有稍微變大的趨勢,不過能
    隙值都位在1.5~1.6 eV 之間。摻雜Zn 後光電流表現並沒有下降特別
    多,可以利用此特性,我們會進一步量測能階位置來判斷摻雜n-type
    CuInS2 及Zn 之n-type CuInS2 是否能做為p-n junction 能階設計的材
    料之一。


    n-type CuInS2 thin films were fabricated with different [Cu]/[In] ratio
    in precursor by spray pyrolysis method on a transparent indium-doped tin
    oxide (ITO) substrate followed by calcination in the Ar at 500 oC. Further
    we investigated the structural and optical properties of Zn-doped n-type
    CuInS2. As the XRD patterns, shows the chalcopyrite CuInS2 structure
    with the increase of the amount of Cu, the higher the crystallinity of CuInS2.
    The optical study show the absorption coefficient (α) in the UV-visible
    region is found to be in the order of 104~105 cm-1 which is the optimum
    value for an efficient absorber. The synthesized n-type CuInS2 thin film has
    an optical bandgap of 1.5~1.55 eV. CuInS2 thin film yielded a photocurrent
    density of 2.24 mA cm-2 at 1.23 V vs. RHE in 0.25 M Na2S and 0.35 M
    Na2SO3 under 300 W xenon lamp. Zn-doped CuInS2 has the same optical
    bandgap of 1.5~1.6 eV as the n-type CuInS2. Zn-doped CuInS2 didn’t
    facilitate photocurrent density, but photocurrent density didn’t drop too
    much as well. For this characteristic, we will determine energy band
    position of n-type CuInS2 and Zn-doped CuInS2 to be band position design
    of the p-n junction material.

    目錄 摘要 I 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 一、緒論 1 1-1 前言 1 1-2 光觸媒分解水發展 2 1-3 研究動機 4 二、文獻回顧 6 2-1 半導體光觸媒分解水 6 2-1-1 半導體能帶 6 2-1-2 光觸媒分解水產氫原理 9 2-2 光觸媒材料 11 2-3 CuInS2 光觸媒 13 2-3-1 CuInS2 化學結構組成與電性關係 13 2-3-2 n-type CuInS2 16 2-3-3 元素摻雜CuInS2 18 2-4 噴霧熱裂解法製備CuInS2 20 三、實驗方法 22 3-1 實驗藥品 22 3-2 實驗儀器與分析儀器 24 3-3 實驗步驟 26 3-3-1 基材清洗 27 3-3-2 製備CuInS2 薄膜 28 3-3-3 製備摻雜Zn 之CuInS2 薄膜 28 3-3-4 光電化學量測 30 四、結果與討論 33 4-1 n-type CuInS2 33 4-1-1 n-type CuInS2:X 光繞射分析 (X-ray diffraction) 33 4-1-2 n-type CuInS2:拉曼光譜學(Raman spectroscopy) 35 4-1-3 n-type CuInS2:電子掃描顯微鏡 (Scanning Electron Microscope)分析 37 4-1-4 n-type CuInS2:紫外光可見光光譜儀(UV-Visible Spectrophotometer) 40 4-1-5 n-type CuInS2:光電化學量測 44 4-2 Zn-doped n-type CuInS2 46 4-2-1 Zn-doped n-type CuInS2:X 光繞射分析 (X-ray diffraction) 46 4-2-2 Zn-doped n-type CuInS2:拉曼光譜學(Raman spectroscopy) 48 4-2-3 Zn-doped n-type CuInS2:紫外光可見光光譜儀(UV-Visible Spectrophotometer) 49 4-2-4 Zn-doped n-type CuInS2:光電化學量測 52 4-3 Mott-Schottky 測量 54 五、結論與未來展望 56 參考文獻 57 附錄 66

    [1] S. Dutta, "A review on production, storage of hydrogen and its
    utilization as an energy resource," Journal of Industrial and
    Engineering Chemistry, vol. 20, pp. 1148-1156, 2014.
    [2] B. Parida, S. Iniyan, and R. Goic, "A review of solar photovoltaic
    technologies," Renewable and Sustainable Energy Reviews, vol.
    15, pp. 1625-1636, 2011.
    [3] C. Zamfirescu, I. Dincer, G. Naterer, and R. Banica, "Quantum
    efficiency modeling and system scaling-up analysis of water
    splitting with Cd1− xZnxS solid-solution photocatalyst," Chemical
    Engineering Science, vol. 97, pp. 235-255, 2013.
    [4] A. Fujishima and K. Honda, "Electrochemical photolysis of water
    at a semiconductor electrode," Nature, vol. 238, pp. 37-38, 1972.
    [5] M. X. Tan, P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E.
    Stanton, and N. S. Lewis, "Principles and Applications of
    Semiconductor Photoelectrochemistry," in Progress in Inorganic
    Chemistry, ed: John Wiley & Sons, Inc., 2007, pp. 21-144.
    [6] T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L.
    Suib, "Photocatalytic Water Splitting—The Untamed Dream: A
    Review of Recent Advances," Molecules, vol. 21, p. 900, 2016.
    [7] T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, "Photoelectrochemical
    hydrogen generation from water using solar
    energy. Materials-related aspects," International Journal of
    Hydrogen Energy, vol. 27, pp. 991-1022, 2002.
    58
    [8] K. Rajeshwar, "Fundamentals of semiconductor electrochemistry
    and photoelectrochemistry," Encyclopedia of Electrochemistry,
    2007.
    [9] H. M. Chen, C. K. Chen, R.-S. Liu, L. Zhang, J. Zhang, and D. P.
    Wilkinson, "Nano-architecture and material designs for water
    splitting photoelectrodes," Chemical Society Reviews, vol. 41, pp.
    5654-5671, 2012.
    [10] J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharp, and S. Ardo,
    "Experimental demonstrations of spontaneous, solar-driven
    photoelectrochemical water splitting," Energy & Environmental
    Science, vol. 8, pp. 2811-2824, 2015.
    [11] M. D. Bhatt and J. S. Lee, "Recent theoretical progress in the
    development of photoanode materials for solar water splitting
    photoelectrochemical cells," Journal of Materials Chemistry A,
    vol. 3, pp. 10632-10659, 2015.
    [12] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi,
    E. A. Santori, et al., "Solar water splitting cells," Chemical
    Reviews, vol. 110, pp. 6446-6473, 2010.
    [13] K. Sivula, F. Le Formal, and M. Grätzel, "Solar water splitting:
    progress using hematite (α‐Fe2O3) photoelectrodes,"
    ChemSusChem, vol. 4, pp. 432-449, 2011.
    [14] C. X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D. A. Wheeler,
    J. Z. Zhang, B. R. Antoun and S. S. Mao, "A perspective on solardriven
    water splitting with all-oxide hetero-nanostructures," Energy
    & Environmental Science, vol. 4, pp. 3889-3899, 2011.
    59
    [15] R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and
    M. S. Wrighton, "Improvement of photoelectrochemical
    hydrogen generation by surface modification of p-type silicon
    semiconductor photocatrodes," Journal of the American Chemical
    Society, vol. 104, pp. 467-482, 1982.
    [16] A. Heller and R. G. Vadimsky, "Efficient solar to chemical
    conversion: 12% efficient photoassisted electrolysis in the [p-type
    InP (Ru)]/HCl-KCl/Pt (Rh) cell," Physical Review Letters, vol. 46,
    p. 1153, 1981.
    [17] O. Khaselev and J. A. Turner, "Electrochemical Stability of p‐
    GaInP2 in Aqueous Electrolytes Toward Photoelectrochemical
    Water Splitting," Journal of the Electrochemical Society, vol. 145,
    pp. 3335-3339, 1998.
    [18] J. Sun, C. Liu, and P. Yang, "Surfactant-free, large-scale, solution–
    liquid–solid growth of gallium phosphide nanowires and their use
    for visible-light-driven hydrogen production from water
    reduction," Journal of the American Chemical Society, vol. 133,
    pp. 19306-19309, 2011.
    [19] C. A. Grimes, O. K. Varghese, and S. Ranjan, Hydrogen generation
    by water splitting: Springer, 2008.
    [20] E. A. Santori, J. R. Maiolo III, M. J. Bierman, N. C. Strandwitz, M.
    D. Kelzenberg, B. S. Brunschwig, et al., "Photoanodic behavior of
    vapor-liquid-solid–grown, lightly doped, crystalline Si microwire
    arrays," Energy & Environmental Science, vol. 5, pp. 6867-6871,
    2012.
    60
    [21] J. Luo, S. D. Tilley, L. Steier, M. Schreier, M. T. Mayer, H. J. Fan
    and M. Grätzel, "Solution transformation of Cu2O into CuInS2 for
    solar water splitting," Nano Letters, vol. 15, pp. 1395-1402, 2015.
    [22] B. J. Trześniewski and W. A. Smith, "Photocharged BiVO4
    photoanodes for improved solar water splitting," Journal of
    Materials Chemistry A, vol. 4, pp. 2919-2926, 2016.
    [23] H. Liu, R. Nakamura, and Y. Nakato, "Bismuth–Copper Vanadate
    BiCu2VO6 as a Novel Photocatalyst for Efficient Visible‐Light‐
    Driven Oxygen Evolution," ChemPhysChem, vol. 6, pp. 2499-
    2502, 2005.
    [24] M. Higashi, K. Domen, and R. Abe, "Highly stable water splitting
    on oxynitride TaON photoanode system under visible light
    irradiation," Journal of the American Chemical Society, vol. 134,
    pp. 6968-6971, 2012.
    [25] D. Yokoyama, H. Hashiguchi, K. Maeda, T. Minegishi, T. Takata,
    R. Abe, J. Kubota and K. Domen, "Ta3N5 photoanodes for water
    splitting prepared by sputtering," Thin Solid Films, vol. 519, pp.
    2087-2092, 2011.
    [26] Y. Tang, N. Rong, F. Liu, M. Chu, H. Dong, Y. Zhang and P. Xiao,
    "Enhancement of the photoelectrochemical performance of CuWO4
    films for water splitting by hydrogen treatment," Applied Surface
    Science, vol. 361, pp. 133-140, 2016.
    [27] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, pp.
    338-344, 2001.
    [28] M. Fujita, "Silicon photonics: Nanocavity brightens silicon,"
    61
    Nature Photonics, vol. 7, pp. 264-265, 2013.
    [29] J. Binsma, L. Giling, and J. Bloem, "Luminescence of CuInS2: I.
    The broad band emission and its dependence on the defect
    chemistry," Journal of Luminescence, vol. 27, pp. 35-53, 1982.
    [30] B. Tell, J. Shay, and H. Kasper, "Room‐Temperature Electrical
    Properties of Ten I‐III‐VI2 Semiconductors," Journal of Applied
    Physics, vol. 43, pp. 2469-2470, 1972.
    [31] Y. Li, Y. Wang, R. Tang, X. Wang, P. Zhu, X. Zhao and C. Gao,
    "Structural phase transition and electrical transport properties of
    CuInS2 nanocrystals under high pressure," The Journal of Physical
    Chemistry C, vol. 119, pp. 2963-2968, 2015.
    [32] H. Y. Ueng and H. Hwang, "The defect structure of CuInS2. Part I:
    Intrinsic defects," Journal of Physics and Chemistry of Solids, vol.
    50, pp. 1297-1305, 1989.
    [33] B. Tell and F. Thiel, "Photovoltaic properties of p‐n junctions in
    CuInS2," Journal of Applied Physics, vol. 50, pp. 5045-5046, 1979.
    [34] K. Ito, N. Matsumoto, T. Horiuchi, K. Ichino, H. Shimoyama, T.
    Ohashi, et al., "Theoretical model and device performance of
    CuInS2 thin film solar cell," Japanese Journal of Applied Physics,
    vol. 39, p. 126, 2000.
    [35] E. Arici, N. S. Sariciftci, and D. Meissner, "Hybrid solar cells
    based on nanoparticles of CuInS2 in organic matrices," Advanced
    Functional Materials, vol. 13, pp. 165-171, 2003.
    [36] Y. Tang, Y. H. Ng, J.-H. Yun, and R. Amal, "Fabrication of a
    62
    CuInS2 photoelectrode using a single-step electrodeposition with
    controlled calcination atmosphere," RSC Advances, vol. 4, pp.
    3278-3283, 2014.
    [37] Y. Choi, M. Beak, and K. Yong, "Solar-driven hydrogen evolution
    using a CuInS2/CdS/ZnO heterostructure nanowire array as an
    efficient photoanode," Nanoscale, vol. 6, pp. 8914-8918, 2014.
    [38] J. Chen, D. Yang, D. Song, J. Jiang, A. Ma, M. Z. Hu and C. Ni,
    "Recent progress in enhancing solar-to-hydrogen efficiency,"
    Journal of Power Sources, vol. 280, pp. 649-666, 2015.
    [39] H. Ueng and H. Hwang, "Defect identification in undoped and
    phosphorus‐doped CuInS2 based on deviations from ideal chemical
    formula," Journal of Applied Physics, vol. 62, pp. 434-439, 1987.
    [40] H. Ueng and H. Hwang, "The defect structure of CuInS2. Part III:
    Extrinsic impurities," Journal of Physics and Chemistry of Solids,
    vol. 51, pp. 11-18, 1990.
    [41] T. Yamamoto, I. V. Luck, and R. Scheer, "Materials design of ntype
    CuInS2 thin films using Zn or Cd species," Applied surface
    science, vol. 159, pp. 350-354, 2000.
    [42] M. Zribi, M. Kanzari, and B. Rezig, "Effects of Na incorporation in
    CuInS2 thin films," The European Physical Journal Applied
    Physics, vol. 29, pp. 203-207, 2005.
    [43] M. Zribi, M. Kanzari, and B. Rezig, "Optical constants of Nadoped
    CuInS2 thin films," Materials Letters, vol. 60, pp. 98-103,
    2006.
    [44] M. Zribi, M. B. Rabeh, R. Brini, M. Kanzari, and B. Rezig,
    63
    "Influence of Sn incorporation on the properties of CuInS2 thin
    films grown by vacuum evaporation method," Thin Solid Films,
    vol. 511, pp. 125-129, 2006.
    [45] S. Seeger and K. Ellmer, "Reactive magnetron sputtering of CuInS2
    absorbers for thin film solar cells: problems and prospects," Thin
    Solid Films, vol. 517, pp. 3143-3147, 2009.
    [46] G.-T. Pan, M.-H. Lai, R.-C. Juang, T.-W. Chung, and T. C.-K.
    Yang, "The preparation and characterization of Ga-doped CuInS2
    films with chemical bath deposition," Solar Energy Materials and
    Solar Cells, vol. 94, pp. 1790-1796, 2010.
    [47] C. Broussillou, M. Andrieux, M. Herbst-Ghysel, M. Jeandin, J.
    Jaime-Ferrer, S. Bodnar, et al., "Sulfurization of Cu–In
    electrodeposited precursors for CuInS2-based solar cells," Solar
    Energy Materials and Solar Cells, vol. 95, pp. S13-S17, 2011.
    [48] W. Septina, T. Harada, Y. Nose, and S. Ikeda, "Investigation of the
    electric structures of heterointerfaces in Pt-and In2S3-modified
    CuInS2 photocathodes used for sunlight-induced hydrogen
    evolution," ACS Applied Materials & Interfaces, vol. 7, pp. 16086-
    16092, 2015.
    [49] H. Kumagai, T. Minegishi, N. Sato, T. Yamada, J. Kubota, and K.
    Domen, "Efficient solar hydrogen production from neutral
    electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes,"
    Journal of Materials Chemistry A, vol. 3, pp. 8300-8307, 2015.
    [50] S. Peng, F. Cheng, J. Liang, Z. Tao, and J. Chen, "Facile solutioncontrolled
    growth of CuInS2 thin films on FTO and TiO2/FTO glass
    64
    substrates for photovoltaic application," Journal of Alloys and
    Compounds, vol. 481, pp. 786-791, 2009.
    [51] M. Nanu, L. Reijnen, B. Meester, J. Schoonman, and A. Goossens,
    "CuInS2 thin films deposited by ALD," Chemical Vapor
    Deposition, vol. 10, pp. 45-49, 2004.
    [52] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner,
    W. Wischmann and M. Powalla, "New world record efficiency for
    Cu(In,Ga)Se2 thin‐film solar cells beyond 20%," Progress in
    Photovoltaics: Research and Applications, vol. 19, pp. 894-897,
    2011.
    [53] A. Katerski, A. Mere, V. Kazlauskiene, J. Miskinis, A. Saar, L.
    Matisen, A. Kikas and M. Krunks, "Surface analysis of spray
    deposited copper indium disulfide films," Thin Solid Films, vol.
    516, pp. 7110-7115, 2008.
    [54] I. Oja, M. Nanu, A. Katerski, M. Krunks, A. Mere, J. Raudoja and
    A. Goossens, "Crystal quality studies of CuInS2 films prepared by
    spray pyrolysis," Thin Solid Films, vol. 480, pp. 82-86, 2005.
    [55] Y. Cai, J. C. Ho, S. K. Batabyal, W. Liu, Y. Sun, S. G. Mhaisalkar,
    et al., "Nanoparticle-induced grain growth of carbon-free solutionprocessed
    CuIn (S, Se)2 solar cell with 6% efficiency," ACS applied
    materials & interfaces, vol. 5, pp. 1533-1537, 2013.
    [56] M. Ortega-López and A. Morales-Acevedo, "Characterization of
    CuInS2 thin films for solar cells prepared by spray pyrolysis," Thin
    Solid Films, vol. 330, pp. 96-101, 1998.
    [57] M. Krunks, V. Mikli, O. Bijakina, H. Rebane, A. Mere, T. Varema
    65
    and E. Mellikov, "Composition and structure of CuInS2 films
    prepared by spray pyrolysis," Thin Solid Films, vol. 361, pp. 61-64,
    2000.
    [58] M. Krunks, O. Bijakina, T. Varema, V. Mikli, and E. Mellikov,
    "Structural and optical properties of sprayed CuInS2 films," Thin
    Solid Films, vol. 338, pp. 125-130, 1999.
    [59] M. Zouaghi, T. B. Nasrallah, S. Marsillac, J. Bernede, and S.
    Belgacem, "Physico-chemical characterization of spray-deposited
    CuInS2 thin films," Thin Solid Films, vol. 382, pp. 39-46, 2001.
    [60] K. Wu and D. Wang, "Temperature‐dependent Raman investigation
    of CuInS2 with mixed phases of chalcopyrite and CuAu," Physica
    Status Solidi (a), vol. 208, pp. 2730-2736, 2011.

    QR CODE
    :::