跳到主要內容

簡易檢索 / 詳目顯示

研究生: 虞凱鈞
Kai-Chun Yu
論文名稱: 以小波及多元線性迴歸分析估算與驗證區域地下水位
Regional Groundwater Level Estimation and Validation using Wavelet and Multiple Linear Regression Techniques
指導教授: 吳瑞賢
Ray-Shyan Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 102
中文關鍵詞: 降雨地下水小波轉換多元線性迴歸
外文關鍵詞: rainfall, groundwater level, wavelet transform, multiple linear regression
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因受到降雨時空分布不均及氣候變遷影響,水文不確定性相對提高,故如何有效利用及永續經營有限的水資源,便是非常重要的課題。本文將降雨及地下水水位進行小波分析後,藉由小波時頻能量、小波分解及小波相關分析彼此的關係,並依此關係透過多元線性迴歸來建立降雨及地下水水位的關係式,可了解因降雨所導致的地下水水位變動為何。透過小波分析,得到降雨與地下水的大致關為拆解出來的d4(第四段細節)、d5、d6、d7、d8、d9、d10及a10(第十段近似)波段。其中此區域的四個雨量站因為波段型態非常相似,因此可以使用平均雨量來代替四個不同雨量站資料。而迴歸分析時,則要跳脫一般對於降雨地下水水位的直覺認識,將不同頻率段資料各自看成一個不同的變數來進行迴歸,能夠更好的將結果貼近每個地下水水位的觀測資料。


    Due to the uneven spatial and temporal distribution of rainfall and the impact of the climate change, hydrological uncertainty has been increasing. Therefore, how to manage limited water resources effectively and sustainably is a crucial issue. This paper analyzes the relationship between rainfall and groundwater level through wavelet transform, wavelet decomposition and wavelet coherence. And then establishes the multiple linear regression between rainfall and groundwater level based on this relationship was established. Through wavelet analysis, the approximate relationship between rainfall and groundwater is identified, which are the disassembled d4 (fourth detail), d5, d6, d7, d8, d9, d10 and a10 (tenth approximate) bands. Among them, the four rainfall stations in this area present similar patterns, therefore the average rainfall was utilized to replace the dataset of four different rainfall stations. When it comes to regression analysis, we need to get rid of the general intuition about the relationship between rainfall and groundwater level. The data in different frequency bands as regarded as different variables for regression, the results show a better fit to the observation data of each groundwater level.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 本文架構 2 1.4 研究流程 3 第二章 文獻回顧 4 2.1 小波理論 4 2.2 迴歸分析 6 2.3 小波與迴歸分析用於水文系統之模型 9 第三章 研究區域與方法 13 3.1 研究區域 13 3.2 小波理論 20 3.2.1 小波轉換 20 3.2.2 小波拆解 22 3.2.3 交叉小波及小波相關 23 3.3 多元線性迴歸理論 24 第四章 結果與討論 25 4.1 小波分析 25 4.1.1 降雨與地下水水位測站基本小波分析 25 4.1.1.1 降雨測站基本小波分析 25 4.1.1.2 地下水水位測站基本小波分析 27 4.1.2 小波相關 32 4.1.2.1 降雨測站間小波相關 32 4.1.2.2 地下水水位測站間小波相關 35 4.1.2.3 平均雨量及地下水水位測站間小波相關 37 4.1.3 小波拆解與重組 40 4.2 多元迴歸 44 4.2.1 整段重組資料迴歸 44 4.2.2 分段資料迴歸 47 4.3 估算與驗證 51 4.3.1 估算結果 51 4.3.2 測站所使用係數 57 4.3.3 驗證結果 60 第五章 結論與建議 67 5.1 結論 67 5.2 建議 68 參考文獻 69 附錄 75

    1. 王瀚德,「小波理論與類神經網路應用於潮汐之預測與補遺」,國立中山大學海洋環境及工程學系,碩士論文,2001。
    2. 林聖鈞,「應用小波分析辨識地下水水位模擬之類神經網路架構」,國立臺灣大學土木工程學系,碩士論文,2008。
    3. 林遠見、余化龍、陳家榜,「降雨與地下水空間時間變動之交叉小波分析-以屏東平原為例」,2015。
    4. 陳忠偉、謝壎煌、李振誥,「台北盆地地下水可再利用量評估」,農業工程學報第54卷第1期,70-84頁,2008年3月。
    5. 黃瓊珠、莊士賢、李汴軍、王得根,「小波轉換應用於潮位資料品管之研究」,第30 屆海洋工程研討會論文集,793-798頁,國立交通大學,2008年11月。
    6. 劉振宇、林俊男、洪有仁、張誠信,「金門地區地面水與地下水聯合運用」,臺灣水利第55卷第2期,44-52頁,2007年6月。
    7. 廖啟佑,「應用類神經網路與小波理論分析地震前地下水位波動」,國立台北科技大學土木與防災研究所,碩士論文,2005
    8. Adamowski, J., Chan, H.F., "A wavelet neural network conjunction model for groundwater level forecasting", Journal of Hydrology, Vol.407, pp.28-40, 2011.
    9. Adamowski, J., Sun, K., "Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds", Journal of Hydrology, Vol.390, pp.85-91, 2010.
    10. Alizadeh, M.J., Kavianpour, M.R., "Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean", Marine Pollution Bulletin, Vol.98, pp.171-178, 2015.
    11. Andrade, L.C.M., Oleskovicz, M., Fernandes, R.A.S., "Adaptive threshold based on wavelet transform applied to the segmentation of single and combined power quality disturbances", Applied Soft Computing, Vol.38, pp.967-977, 2016.
    12. Araghinejad, S., Azmi, M., Kholghi, M., "Application of artificial neural network ensembles in probabilistic hydrological forecasting", Journal of Hydrology, Vol.407, pp.94-104, 2011.
    13. Ball, J.E., Luk, K.C., Sharma, A., "A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting", Journal of Hydrology, Vol.227, pp.56-65, 2000.
    14. Beran, J., Heiler, M.A., "A nonparametric regression cross spectrum for multivariate time series", Journal of Multivariate Analysis, Vol.99, pp.684-714, 2008.
    15. Cao, L., Hong, Y., Fang, H., He, G., "Predicting chaotic time series with wavelet networks", Physica D, Vol.85, pp.225-238, 1995.
    16. Chen, I.-T., Chang, L.-C., Chang, F.-J., "Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps", Journal of Hydrology, Vol.556, pp.131–142, 2018.
    17. Chiou, J.-M., Yang, Y.-F., Chen, Y.-T., "Multivariate functional linear regression and prediction", Journal of Multivariate Analysis, Vol.146, pp.301-312, 2016.
    18. Daliakopoulos, I.N., Coulibaly, P., Tsanis, I., "Groundwater level forecasting using artificial neural networks", Journal of Hydrology, Vol.309, pp.229-240, 2005.
    19. Du, K., Zhao, Y., Lei, J., "The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series", Journal of Hydrology, Vol.552, pp.44-51, 2017.
    20. Ebrahimi, H., Rajaee, T., "Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine ", Global and Planetary Change, Vol.148, pp.181-191, 2017.
    21. Grinsted, A., Moore, J. C., Jevrejeva, S., "Application of the cross wavelet transform and wavelet coherence to geophysical time series", Nonlinear Processes in Geophysics, Vol.11, pp.561-566, 2004.
    22. Karthikeyan, L., Kumar, D.N., "Predictability of nonstationary time series using wavelet and EMD based ARMA models", Journal of Hydrology, Vol.502, pp.103-119, 2013.
    23. Labat, D., "Cross wavelet analyses of annual continental freshwater discharge and selected climate indices", Journal of Hydrology, Vol.385, pp.269-278, 2010.
    24. Maiti, S., Tiwari, R. K., "A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction", Environmental Earth Sciences, Vol.71, pp.3147-3160, 2014.
    25. Nalley, D., Adamowski, J., Khalil, B., "Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008)", Journal of Hydrology, Vol.475, pp.204-228, 2012.
    26. Nourani, V., Hosseini Baghanam, A., Adamowski, J., Kisi, O., "Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review", Journal of Hydrology, Vol.514, pp.358-377, 2014.
    27. Oh, Y.-Y., Yun, S.-T., Yu, S., Hamm, S.-Y., "The combined use of dynamic factor analysis and wavelet analysis to evaluate latent factors controlling complex groundwater level fluctuations in a riverside alluvial aquifer.", Journal of Hydrology, Vol.555, pp.938–955, 2017.
    28. Ozger, M., Mishra, A.K., Singh, V.P., "Scaling characteristics of precipitation data in conjunction with wavelet analysis", Journal of Hydrology, Vol.395, pp.279-288, 2010.
    29. Piotrowski, A.P., Napiorkowski, J.J., "Optimizing neural networks for river flow forecasting – Evolutionary Computation methods versus the Levenberg–Marquardt approach", Journal of Hydrology, Vol.407, pp.12-27, 2011.
    30. Quilty, J., Adamowski, J., "Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework", Journal of Hydrology, Vol.563, pp.336-353, 2018.
    31. Sahoo,S., Jha, M.K., "Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment", Hydrogeology Journal, Vol.21, pp.1865-1887, 2013.
    32. Salerno, F., Tartari, G., "A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments", Journal of Hydrology, Vol.376, pp.295-306, 2009.
    33. Sang, Y., Wang, Z., Liu, C., "Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis", Journal of Hydrology, Vol.424-425, pp.154-164, 2012.
    34. Shiri, J., Kisi, O., Yoon, H., Lee, K.-K., Hossein Nazemi, A., "Predicting groundwater level fluctuations with meteorological effect implications—A comparative study among soft computing techniques", Computers & Geosciences, Vol.56, pp.32-44, 2013.
    35. Shoaib, M., Shamseldin, A.Y, Melville, B.W., Khan, M.M., "Runoff forecasting using hybrid Wavelet Gene Expression Programming (WGEP) approach", Journal of Hydrology, Vol.527, pp.326-344, 2015.
    36. Yoon, H., Jun, S.-C., Hyun, Y., Bae, G.-O., Lee, K.-K., "A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer", Journal of Hydrology, Vol.396, pp.128-138, 2011.
    37. Yoon, H., Hyun, Y., Ha, K., Lee, K.-K., Kim, G.-B., "A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions", Computers & Geosciences, Vol.90, pp.144-155, 2016.
    38. Yu, C., Luo, L. Chan, L.L.H. Rakthanmanon, T. Nutanong, S., "A fast LSH-based similarity search method for multivariate time series", Information Sciences, Vol.476, pp.337-356, 2019.
    39. Yu, H.-L.,Lin, Y.-C., "Analysis of space–time non-stationary patterns of rainfall–groundwater interactions by integrating empirical orthogonal function and cross wavelet transform methods", Journal of Hydrology, Vol.525, pp.585-597, 2015.
    40. Zhang, K., Gençay, R., Ege Yazgan, M., "Application of wavelet decomposition in time-series forecasting", Economics Letters, Vol.158, pp.41-46, 2017.
    41. Zhu, L., Wang, Y., Fan, Q., "MODWT-ARMA model for time series prediction", Applied Mathematical Modelling, Vol.38, pp.1859-1865, 2014.

    QR CODE
    :::