| 研究生: |
張岳閔 Yueh-Min Chang |
|---|---|
| 論文名稱: |
以雙因子理論的觀點探討正負網路評論的有效性 The effectiveness of online review-the perspective of two-factor theory |
| 指導教授: | 陳炫碩 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 雙因子理論 、負面偏誤 、網路評論 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去學者研究網路評論與消費者的關係的時候,常常探討的是消費者的涉入程度跟消費者的專家程度。故本研究希望藉由雙因子理論來探討產品屬性對消費者不同程度的重要會如何影響正負網路評論的有效性,同時也希望了解不同產品類別是否負面偏誤效果會有差距。研究結果指出,雙因子能夠部分調節負面偏誤的效果。而不同的產品類型的負面偏誤是沒有差距的。
Prior studies in online review about the relationship between online review and consumer usually focused on consumer's involvement and expertise. This research will use the two-factor theory to study the different importance of different product attribute, and how the different importance influence the effectiveness of online review. At the same time, this research try to find out which product type has greater effect of negativity bias than the another. As a result, this research finds out that two-factor partially moderate the effect of negativity bias. And there's no distance between the two product type on the effect of negativity bias.
1.Agustin, C., & Singh, J. (2005). Curvilinear effects of consumer loyalty determinants in relational exchanges. Journal of Marketing Research, 42(1), 96–108.
2.Bae, S., & Lee, T. (2011). Product type and consumers ’ perception of online consumer reviews. Electron Markets, 255–266.
3.Briñol, P., Petty, R. E., & Tormala, Z. L. (2004). Self-Validation of Cognitive Responses to Advertisements. Journal of Consumer Research, 30(4), 559–573.
4.Baumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D. (2001). Bad is stronger than good. Review of General Psychology, 5(4), 323–370.
5.Chen, Z., & Lurie, N. H. (2013). Temporal Contiguity and Negativity Bias in the Impact of Online Word of Mouth. Journal of Marketing Research, L(August), 463–476.
6.Buttle, F. a. (1998). Word of mouth: understanding and managing referral marketing. Journal of Strategic Marketing, 6(3), 241–254.
7.Chen, Z., & Lurie, N. H. (2013). Temporal Contiguity and Negativity Bias in the Impact of Online Word of Mouth. Journal of Marketing Research, L(August), 463–476.
8.Cheung, C. M. K., Lee, M. K. O., & Rabjohn, N. (2013). The impact of electronic word-of-mouth. Internet Research, 18(3), 229–247.
9.Chevalier, J. A., & Mayzlin, D. (2006). The Effect of Word of Mouth on Sales: Online Book Reviews. Journal of Marketing Research,345–354.
10.Demangeot, C., & Broderick, A. J. (2010). Consumer Perceptions of Online Shopping Environments. Psychology & Marketing, 30(6), 461–469. r
11.Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H.(2010) Handbook of Partial Least Squares.
12.Gibson, B. (2008). Can Evaluative Conditioning Change Attitudes toward Mature Brands? New Evidence from the Implicit Association Test. Journal of Consumer Research, 35(1), 178–188.
13.Han, S., Wang, X., Wang, Y., & Gao, F. (2001). The application and validation of two-factor theory to the design of service guarantee for online stores.
14.Hao, Y., Ye, Q., Li, Y., & Cheng, Z. (2010). How does the valence of online consumer reviews matter in consumer decision making? Differences between search goods and experience goods. Proceedings of the Annual Hawaii International Conference on System Sciences, 1–10.
15.Herzberg, F. (2003). One More Time: How Do You Motivate Employees? Harvard Business Review, 81(1).
16.Iris Vermeir and Wim Verbeke(2006) Sustainable food Consumption: Exploring
the consumer ‘‘attitude – behavioral intention’’ gap. Journal of Agricultural and
Environmental Ethics (2006) 169–194
17.Johan Arndt(1967). Role of Product-Related Conversations in the Diffusion of a
New Product. Journal of Marketing ResearchVol. 4, No. 3 (Aug., 1967), pp.
291-295
18.Joseph, F. H., E. A. Rolph and L. T. Ronald, Multivariate Data Analysis, with Readings, 1987, Macmillan Publishing Company, N. Y..
19.Korfiatis, N., García-Bariocanal, E., & Sánchez-Alonso, S. (2012). Evaluating content quality and helpfulness of online product reviews: The interplay of review helpfulness vs. review content. Electronic Commerce Research and Applications, 11(3), 205–217.
20.Lee, S., Shin, B., & Lee, H. G. (2009). Understanding Post-adoption Usage of Mobile Data Services : The Role of Supplier-side Variables Understanding Post-adoption Usage of Mobile Data Services : The Role of Supplier-side Variables. Journal of the Association for Information Systems, 10(12), 860–888.
21.Lim, B. C., & Chung, C. M. Y. (2011). The impact of word-of-mouth communication on attribute evaluation. Journal of Business Research, 64(1), 18–23.
22.Mcwilliams, A. (2016). Corporate Social Responsibility : A Theory of the Firm The Academy of Management Review , Vol . 26 , No . 1 ( Jan ., 2001 ), pp . 117-127
23.Moore, S. G. (2015). Attitude predictability and helpfulness in online reviews: The role of explained actions and reactions. Journal of Consumer Research, 42(1), 30–44.
24.Mudambi, S. M., & Schuff, D. (2010). What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com. MIS Quarterly, 34(1), 185–200.
25.Nelson, P. (1974). Advertising as Information. Journal of Political Economy. Vol. 82, No. 4 (Jul. - Aug., 1974), pp. 729-754
26.Prensky, M. (2001). Digital Natives, Digital Immigrants. On the Horizon, 9(5), 1–6.
27.Sachau, D. a. (2007). Resurrecting the Motivation-Hygiene Theory: Herzberg and the Positive Psychology Movement. Human Resource Development Review, 6(4), 377–393.
28.Tuch, A. N., & Hornbaek, K. (2015). Does Herzberg’s Notion of Hygienes and Motivators Apply to User Experience? ACM Transactions on Computer-Human Interaction (TOCHI), 22(4), 16:1–16:24.
29.Wang, Y.-S., Lin, H.-H., & Luarn, P. (2006). Predicting consumer intention to use mobile service. Information Systems Journal, 16(2), 157–179.
30.Yin, D., Bond, S. D., & Zhang, H. (2014). Anxious or Angry? Effects of Discrete Emotions on the Perceived Helpfulness of Online Reviews. MIS Quarterly, 38(2), 539–560.
31.Zhang, P., & Von Dran, G. M. (2000). Satisfiers and dissatisfiers: a two-factor model for website design and evaluation. Journal of the American Society for Information Science and Technology, 51(14), 1253–1268.