跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐民晏
Min-Yen Hsu
論文名稱: 探討聚乙二醇對溶菌酶與管柱層析樹脂間交互作用之影響
Effects of Polyethylene Glycol on the Interactions Lysozyme with Chromatography Resins
指導教授: 陳文逸
Wen-Yih Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 108
中文關鍵詞: 聚乙二醇化聚乙二醇等溫吸附曲線恆溫滴定微卡計管柱層析樹脂
外文關鍵詞: polyethylene glycol, PEGylation, chromatography resins, isothermal titration microcalorimetry, adsorption isotherms
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 製藥產業由早期從自然界中取得或合成的小分子藥物,到二十世紀末拜基因技術工程之賜,蛋白質藥物和胜肽藥物等生物製劑開始蓬勃發展。生物製劑之進一步於藥效提昇、副作用降低、具標靶治療等所謂”biobetters藥物”的相關探討為現今之研究重點。
    目前已有相當多不同的改良方式能使生物製劑的藥效提昇,其中,由於聚乙二醇(polyethylene glycol, PEG)具有良好的生物相容性,所以也被廣泛應用在biobetters藥物的研究發展上。然而,改良後需要將有效藥物成份分離純化會遭遇許多困難,目前也尚未有研究可以完整說明聚乙二醇改質至生物製劑上後,對生物製劑之物理化學及生物性質的影響。
    本研究以針對生物製劑純化時,聚乙二醇分子對生物製劑於層析分離行為之影響為研究重點。我們藉由等溫吸附曲線和恆溫滴定卡計來量測以及探討溶菌酶與管柱層析樹脂間的交互作用中,調控環境之鹽離子種類和濃度,以及額外加入不同分子量、不同濃度聚乙二醇分子看吸附平衡常數以及吸附焓之改變,希望可以藉此得知聚乙二醇於溶液中的行為及其在溶菌酶與管柱層析樹脂間交互作用中所扮演的角色,並執行及觀察聚乙二醇分子改質至溶菌酶上的相關化學反應。
    由實驗結果可得知,添加的鹽種類不同,會對溶菌酶與管柱層析樹脂間吸附行為有不同影響,且行為符合Hofmerister series之論述。而加入聚乙二醇時,聚乙二醇的水合會導致類似kosmotropes的鹽析效應(salting-out effect)產生,且影響程度依分子量大小而有差異。另外,聚乙二醇分子在不同種鹽類溶液中的行為亦會受到鹽類之鹽析或鹽溶效應(salting-in effect)影響,故當溶液中存在有不同種鹽類時,聚乙二醇之影響亦隨之改變。本研究也初步合成聚乙二醇化溶菌酶,並初步探討PEGylation之化學合成與聚乙二醇化溶菌酶於管柱層析之行為。


    Since the development of genetic engineering, protein and peptide drugs now play an important role in pharmaceutical industry. Unfortunately, a short circulating half-life time of protein/peptide drugs limits their pharmaceutical applications. A new product through grafting polyethylene glycol (PEG), a well-known biocompatible polymer, with protein/peptide drugs is called PEGylated product. The PEGylayed drug is able to avoid clearance of kidney or attack of immune system, thus prolong the circulating half-life time. This product is known as “Biobetters” which could improve the efficacy of biologics over the originals. However, the chromatographic purification process of PEGylation protein/peptide drugs is lacking of a general guidence. In particular, for the effects of PEG on protein/peptide drugs and PEG in solution on the chromatographic behavior are required for the guidence. In this study, we investigated the effects of buffer solution contains of the PEG molecules on the interaction between lysozyme and anionic resin (SP Sepharose) via thermodynamic analysis. By combining the analysis of isothermal titration calorimeter and adsorption isotherms, the results revealed that the bindings of lysozyme and resin both in saline buffer and in PEG-contained solution are dominated by enthalpy, indicating the binding adopts electrostatic interactions driven manner. Furthermore, we considered that the solution behavior of PEG on lysozyme-resin binding may be described as a “kosmotrope-like” polymer, which means the existence of PEG will facilitate the salting-out effect in the solution phase. In kosmotropic type saline buffer, such as ammonium sulfate, the addition of PEG molecules would facilitate the increase of binding affinity between lysozyme and resin which resulting in the decrease of binding entropy. Apparently, the hydration of PEG molecules reduces the tightly bounded water molecules around lysozyme surface to reduce the binding entropy gain, i.e. the hydration of PEG molecules lead to the less water molecules being repelled from the protein surface. On the contrary, the addition of PEG molecules would also facilitate the increase of binding affinity between lysozyme and resin which resulting in the increase of binding entropy in chaotropic salt, such as sodium chloride. We suggested that the PEG molecules may have a higher solubility in salting in solution; therefore, the tightly bounded water molecules still preserve around the lysozyme surface resulting in high entropic gain. Consequently, this study provided an important implication on the hydration role of PEG molecules to mediate the binding of protein on resin.

    摘 要 i ABSTRACT iii 致 謝 v 目 錄 vii 圖 目 錄 x 表 目 錄 xiv 一、 緒論 1 二、 文獻回顧 4 2-1 層析法之簡介 4 2-1-1 層析用樹脂之簡介與分類 5 2-2 溶菌酶之簡介與應用 6 2-3 聚乙二醇化之簡介與應用 7 2-3-1 聚乙二醇化之化學合成 10 2-3-2 聚乙二醇化分子之分離純化 14 2-3-3 聚乙二醇化藥物 18 2-5 Langmuir adsorption isotherm model 23 2-6 恆溫滴定微卡計 24 2-6-1 裝置及運作原理之簡介 25 2-6-2 熱量量測與吸附焓之換算 27 三、 實驗藥品、儀器及方法 28 3-1 實驗藥品 28 3-2 儀器設備 30 3-2-1 一般設備 30 3-2-1 恆溫滴定微卡計 31 3-2-2 高效能液相層析儀 31 3-3 實驗步驟 32 3-3-1溶液之配置 32 3-3-2 等溫吸附曲線實驗 33 3-3-3 恆溫滴定微卡計實驗 34 3-3-3-1 實驗步驟 34 3-3-3-2 清洗步驟 36 3-3-4 圓二色光譜儀實驗 37 3-3-5 螢光光譜儀實驗 37 3-3-6 聚乙二醇化溶菌酶製備 38 3-3-6-1 以PEG-aldehyde製備 38 3-3-6-2 以PEG-SPA製備 38 3-3-7 管柱層析實驗 39 四、 結果與討論 40 4-1 批次等溫吸附曲線實驗 40 4-1-1 疏水交互作用層析樹脂 44 4-1-1-1 鹽類效應 45 4-1-1-2 聚乙二醇之影響 47 4-1-2 強陽離子交換樹脂 50 4-1-2-1 鹽類效應 50 4-1-2-2 聚乙二醇之影響 55 4-2 恆溫滴定卡計量測吸附熱力學 62 4-2-1 鹽類效應 64 4-2-2 聚乙二醇之影響 66 4-2-2-1 於鹽類中添加或不添加聚乙二醇之影響 66 4-2-2-2 於鹽類中添加不同分子量之聚乙二醇的影響 69 4-3 聚乙二醇化溶菌酶 75 4-3-1 聚乙二醇化溶菌酶之製備 76 4-3-2 聚乙二醇化溶菌酶之分離純化 78 五、 結 論 80 六、 參考文獻 82 

    [1] DePalma A. Will biobetters beat biologics? 2011.
    [2] Taylor N. Biobetters a big opportunity for biopharm and CROs. 2011.
    [3] Dinwoodie N. Biobetters and the Future Biologics Market. Biopharm Int. 2011;24:31-5.
    [4] Alconcel SNS, Baas AS, Maynard HD. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polymer Chemistry. 2011;2:1442.
    [5] Veronese FM. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials. 2001;22:405-17.
    [6] Fee CJ, Van Alstine JA. PEG-proteins: Reaction engineering and separation issues. Chem Eng Sci. 2006;61:924-39.
    [7] Ettre LS. NOMENCLATURE FOR CHROMATOGRAPHY. Pure and Applied Chemistry. 1993;65:81H72.
    [8] Mine Y, Ma FP, Lauriau S. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J Agr Food Chem. 2004;52:1088-94.
    [9] Israelachvili J. The different faces of poly(ethylene glycol). Proc Natl Acad Sci U S A. 1997;94:8378-9.
    [10] Morar AS, Schrimsher JRL, Chavez MD. PEGylation of proteins: A structural approach. Biopharm Int. 2006;19:34-+.
    [11] Heymann B, Grubmuller H. Elastic properties of poly(ethylene-glycol) studied by molecular dynamics stretching simulations. Chem Phys Lett. 1999;307:425-32.
    [12] Liu K-J, Parsons JL. Solvent Effects on the Preferred Conformation of Poly(ethylene glycols). Macromolecules. 1969;2:529-33.
    [13] 洪世勳. 熱力學分析聚乙二醇在水合程序中結構變化. Master Thesis. 2008;Department of Chemical and Materials Engineering, National Central University, Taiwan.
    [14] Ananthapadmanabhan KP, Goddard ED. Aqueous biphase formation in polyethylene oxide-inorganic salt systems. Langmuir. 1987;3:25-31.
    [15] Chang Y, Chu WL, Chen WY, Zheng J, Liu LY, Ruaan RC, et al. A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self-assembled poly(ethylene oxide) triblock copolymer surfaces. J Biomed Mater Res A. 2010;93A:400-8.
    [16] Chiag YC, Chang Y, Chen WY, Ruaan RC. Biofouling Resistance of Ultrafiltration Membranes Controlled by Surface Self-Assembled Coating with PEGylated Copolymers. Langmuir. 2012;28:1399-407.
    [17] Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2:214-21.
    [18] Pasut G, Veronese FM. Polymer-drug conjugation, recent achievements and general strategies. Progress in Polymer Science. 2007;32:933-61.
    [19] Jevsevar S, Kunstelj M, Porekar VG. PEGylation of therapeutic proteins. Biotechnol J. 2010;5:113-28.
    [20] Gaberc-Porekar V, Zore I, Podobnik B, Menart V. Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr Opin Drug Disc. 2008;11:242-50.
    [21] Abuchowski A, Van Es T, Palczuk NC, Davis FF. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry. 1977;252:3578-81.
    [22] Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliver Rev. 2002;54:459-76.
    [23] Bailon P, Won CY. PEG-modified biopharmaceuticals. Expert Opin Drug Del. 2009;6:1-16.
    [24] Harris JM, Veronese FM. Peptide and protein pegylation II - clinical evaluation - Preface. Adv Drug Deliver Rev. 2003;55:1259-60.
    [25] Veronese FM, Mero A. The impact of PEGylation on biological therapies. Biodrugs. 2008;22:315-29.
    [26] Zalipsky S. Chemistry of Polyethylene-Glycol Conjugates with Biologically-Active Molecules. Adv Drug Deliver Rev. 1995;16:157-82.
    [27] Freitas DD, Abrahao-Neto J. Biochemical and biophysical characterization of lysozyme modified by PEGylation. Int J Pharm. 2010;392:111-7.
    [28] Fee CJ, Van Alstine JM. Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGylated proteins. Bioconjugate Chem. 2004;15:1304-13.
    [29] Cai Y, Yue P. Separation of exenatide analogue mono-PEGylated with 40 kDA polyethylene glycol by cation exchange chromatography. Journal of chromatography A. 2011;1218:6953-60.
    [30] Kim TH, Jiang HH, Lee S, Youn YS, Park CW, Byun Y, et al. Mono-PEGylated dimeric exendin-4 as high receptor binding and long-acting conjugates for type 2 anti-diabetes therapeutics. Bioconjug Chem. 2011;22:625-32.
    [31] Wang X, Tian Y, Lin H, Zang L. Preparation and characterization of PEGylated terlipressin. J Appl Polym Sci. 2010:NA-NA.
    [32] Gao M, Tian H, Ma C, Gao X, Guo W, Yao W. Expression, purification, and C-terminal site-specific PEGylation of cysteine-mutated glucagon-like peptide-1. Applied biochemistry and biotechnology. 2010;162:155-65.
    [33] Annathur GV, Buckley JJ, Muthurania K, Ramasubramanyan N. Application of arginine as an efficient eluent in cation exchange chromatographic purification of a PEGylated peptide. Journal of chromatography A. 2010;1217:3783-93.
    [34] Park EJ, Lee KC, Na DH. Separation of positional isomers of mono-poly(ethylene glycol)-modified octreotides by reversed-phase high-performance liquid chromatography. Journal of chromatography A. 2009;1216:7793-7.
    [35] Schneiderheinze J, Walden Z, Dufield R, Demarest C. Rapid online proteolytic mapping of PEGylated rhGH for identity confirmation, quantitation of methionine oxidation and quantitation of UnPEGylated N-terminus using HPLC with UV detection. Journal of chromatography B, Analytical technologies in the biomedical and life sciences. 2009;877:4065-70.
    [36] Youn YS, Na DH, Yoo SD, Song S-C, Lee KC. Chromatographic separation and mass spectrometric identification of positional isomers of polyethylene glycol-modified growth hormone-releasing factor (1-29). J Chromatogr A. 2004;1061:45-9.
    [37] Dou H, Zhang M, Zhang Y, Yin C. Synthesis and purification of mono-PEGylated insulin. Chem Biol Drug Des. 2007;69:132-8.
    [38] Muller E, Josic D, Schroder T, Moosmann A. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins. J Chromatogr A. 2010;1217:4696-703.
    [39] Moosmann A, Christel J, Boettinger H, Mueller E. Analytical and preparative separation of PEGylated lysozyme for the characterization of chromatography media. J Chromatogr A. 2010;1217:209-15.
    [40] Cisneros-Ruiz M, Mayolo-Deloisa K, Przybycien TM, Rito-Palomares M. Separation of PEGylated from unmodified ribonuclease A using sepharose media. Sep Purif Technol. 2009;65:105-9.
    [41] Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10:1451-8.
    [42] 華人社區健康資源中心. Low White Blood Cells During Chemotherapy. http://wwwcchrchealthorg/. 2004.
    [43] F H. Zur Lehre von der Wirkung der Salze. Archiv for Experimentelle Pathologie und Pharmakologie. 1888;24:247-60.
    [44] Thiyagarajan P, Chaiko DJ, Hjelm RP. A Neutron-Scattering Study of Poly(Ethylene Glycol) in Electrolyte-Solutions. Macromolecules. 1995;28:7730-6.
    [45] Omta AW, Kropman MF, Woutersen S, Bakker HJ. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science. 2003;301:347-9.
    [46] Zhang YJ, Cremer PS. Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol. 2006;10:658-63.
    [47] Zhang YJ, Furyk S, Bergbreiter DE, Cremer PS. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J Am Chem Soc. 2005;127:14505-10.
    [48] Zhang YJ, Cremer PS. The inverse and direct Hofmeister series for lysozyme. Proc Natl Acad Sci U S A. 2009;106:15249-53.
    [49] Bostroem M, Parsons DF, Salis A, Ninham BW, Monduzzi M. Possible Origin of the Inverse and Direct Hofmeister Series for Lysozyme at Low and High Salt Concentrations. Langmuir. 2011;27:9504-11.
    [50] Bostrom M, Williams DRM, Ninham BW. Special ion effects: Why the properties of lysozyme in salt solutions follow a Hofmeister series. Biophys J. 2003;85:686-94.
    [51] Gurau MC, Lim SM, Castellana ET, Albertorio F, Kataoka S, Cremer PS. On the mechanism of the Hofmeister effect. J Am Chem Soc. 2004;126:10522-3.
    [52] Ladbury JE. Application of isothermal titration calorirnetry in the biological sciences: Things are heating up! Biotechniques. 2004;37:885-7.
    [53] Lakowicz JR. Principles of fluorescence spectroscopy. New York: Plenum Press; 1983.
    [54] 李柏毅. 以螢光光譜觀測蛋白質吸附於疏水表面後之構型變化與吸附位向. Master Thesis. 2006;Department of Chemical and Materials Engineering, National Central University, Taiwan.
    [55] Burstein EA, Vedenkina NS, Ivkova MN. FLUORESCENCE AND THE LOCATION OF TRYPTOPHAN RESIDUES IN PROTEIN MOLECULES. Photochem Photobiol. 1973;18:263-79.
    [56] Jiang S. Personal communication. University of Washington, USA. 2012.
    [57] Werner A, Blaschke, T., Hasse, Hans. Personal Communication. University of Kaiserslautern, Germany. 2012.
    [58] Blaschke T, Varon J, Werner A, Hasse H. Microcalorimetric study of the adsorption of PEGylated lysozyme on a strong cation exchange resin. J Chromatogr A. 2011;1218:4720-6.

    QR CODE
    :::