| 研究生: |
朱彥霖 Yen-Lin Chu |
|---|---|
| 論文名稱: |
單晶相石墨烯製備與特性分析 Characteristics analysis and synthesis of hexagonal graphene crystals |
| 指導教授: |
陳昇暉
Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 單晶相 、石墨烯 、化學氣相沉積法 |
| 外文關鍵詞: | graphene, CVD, single orientation |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯,特殊的二維結構使其具有許多優異的特性,如具備優異的電性及極高的光學穿透率,極有潛力應用於透明導電膜。製備石墨烯常用的多晶銅箔以化學氣相沉積法為主,但此方法所製備之石墨烯會因為其晶粒間旋轉角的不同,使晶界缺陷所帶來的散射問題,影響其導電性。
本論文以單晶向銅膜(111)成長方向一致之石墨烯,並以ImageJ影像處理與分析軟體,對SEM所拍攝之圖形進行快速傅立葉轉換,分析石墨烯晶粒旋轉角度,並以拉曼映像分析其晶粒間接合處之缺陷及石墨烯結晶品質,並將之與於銅箔生長之石墨烯進行比較,以及利用四點探針量測其片電阻值。使用單晶相銅膜(111)成長之石墨烯,波長350 nm~800 nm的平均穿透率可達97.52%,片電阻值為534Ω/□,且成長之石墨烯無明顯雙層,與銅箔成長相比,其拉曼量測上有較好的結晶性及較少的缺陷訊號,且能減少石墨烯晶界之缺陷,並有較好的光穿透及電性。
Graphene, a two-dimensional monolayer of sp2 bonded carbon atoms, has attracted since it was discovered in 2004 because of its unique properties. It is a great candidate for flexible transparent conductive films because of its excellent electrical conductivity and high optical transmittance. However, the grain boundaries occurred when graphene synthesized on the polycrystalline Cu foil by using chemical vapor deposition (CVD). The polycrystalline Cu grains lead to the different orientation of graphene domains owing to the lattice constant mismatch.
In this study, the graphene domains with a consistency of orientation were synthesized on the single crystal Cu (111) thin film. Fast Fourier transform was employed to analyze the orientation of hexagonal graphene domains. The resulting sheet resistance of monolayer graphene reaches the values as low as 534Ω/□ and the average transmittance is 97.52 % in the visible light region. Furthermore, through the Raman mapping, the defect signal of graphene boundaries grown on Cu polycrystalline was larger than the graphene grown on the Cu film.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-9, 2004.
[2] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008.
[3] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[4] R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, "Breakdown current density of graphene nanoribbons," Applied Physics Letters, vol. 94, pp. 243114, 2009.
[5] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, 2008.
[6] R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008.
[7] P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, et al., "Grains and grain boundaries in single-layer graphene atomic patchwork quilts," Nature, vol. 469, pp. 389-92, 2011.
[8] S. Ulstrup, M. Bianchi, R. Hatch, D. Guan, A. Baraldi, D. Alfè, et al., "High-temperature behavior of supported graphene: Electron-phonon coupling and substrate-induced doping," Physical Review B, vol. 86, pp. 161402, 2012.
[9] 吳盈樺, "隨機位能對單層石墨烯和石墨烯島嶼電子特性," 國立成功大學, 碩士論文, 2012.
[10] 林永昌、呂俊頡、鄭碩方、和邱博文, "石墨烯之電子能帶特性與其元件應用," 物理雙月刊, vol. 33, pp. 191-202, 2011.
[11] E. Y. Andrei, G. Li, and X. Du, "Electronic properties of graphene: A perspective from scanning tunneling microscopy and magneto-transport," Reports on Progress in Physics , vol.75 ,pp. 056507, 2012.
[12] Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, "Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices," Applied Physics Letters, vol. 86, pp. 073104-073104-3, 2005.
[13] J. Kim, H. Park, J. B. Hannon, S. W. Bedell, K. Fogel, D. K. Sadana, et al., "Layer-resolved graphene transfer via engineered strain layers," Science, vol. 342, pp. 833-836, 2013.
[14] W. A. De Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, et al., "Epitaxial graphene," Solid State Communications, vol. 143, pp. 92-100, 2007.
[15] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, et al., "Highly conducting graphene sheets and Langmuir–Blodgett films," Nature nanotechnology, vol. 3, pp. 538-542, 2008.
[16] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, et al., "Graphene-based composite materials," Nature, vol. 442, pp. 282-286, 2006.
[17] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nature nanotechnology, vol. 3, pp. 270-274, 2008.
[18] 蘇清源, "石墨烯氧化物之特性與應用前景," 物理雙月刊, vol. 33, pp. 163-167, 2011.
[19] C. M. Orofeo, H. Hibino, K. Kawahara, Y. Ogawa, M. Tsuji, K.-i. Ikeda, et al., "Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene," Carbon, vol. 50, pp. 2189-2196, 2012.
[20] H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C. M. Orofeo, et al., "Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire," ACS Nano, vol. 4, pp. 7407-7414, 2010.
[21] P. Sutter, J. T. Sadowski, and E. Sutter, "Graphene on Pt (111): Growth and substrate interaction," Physical Review B, vol. 80, pp. 245411, 2009.
[22] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, pp. 113103, 2008.
[23] S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, "Growth of large-area graphene films from metal-carbon melts," Journal of Applied Physics, vol. 108, pp. 094321, 2010.
[24] H. Ago, Y. Ogawa, M. Tsuji, S. Mizuno, and H. Hibino, "Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene," The Journal of Physical Chemistry Letters, vol. 3, pp. 2228-2236, 2012.
[25] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-4, 2009.
[26] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature nanotechnology, vol. 5, pp. 574-578, 2010.
[27] L. Gan and Z. Luo, "Turning off Hydrogen To Realize Seeded Growth of Subcentimeter Single-Crystal Graphene Grains on Copper," ACS Nano, vol. 7, pp. 9480-9488, 2013.
[28] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, et al., "Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition," Nature Materials, vol. 10, pp. 443-9, 2011.
[29] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, et al., "Graphene films with large domain size by a two-step chemical vapor deposition process," Nano Letters, vol. 10, pp. 4328-34, 2010.
[30] W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, and S. S. Pei, "Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes," Nanotechnology, vol. 23, p. 035603, 2012.
[31] G. H. Han, F. Gunes, J. J. Bae, E. S. Kim, S. J. Chae, H. J. Shin, et al., "Influence of copper morphology in forming nucleation seeds for graphene growth," Nano Letters, vol. 11, pp. 4144-8, 2011.
[32] Y. Ogawa, B. Hu, C. M. Orofeo, M. Tsuji, K.-i. Ikeda, S. Mizuno, et al., "Domain Structure and Boundary in Single-Layer Graphene Grown on Cu(111) and Cu(100) Films," The Journal of Physical Chemistry Letters, vol. 3, pp. 219-226, 2012.
[33] H. Ago, K. Kawahara, Y. Ogawa, S. Tanoue, M. A. Bissett, M. Tsuji, et al., "Epitaxial Growth and Electronic Properties of Large Hexagonal Graphene Domains on Cu(111) Thin Film," Applied Physics Express, vol. 6, pp. 075101, 2013.
[34] K. M. Reddy, A. D. Gledhill, C.-H. Chen, J. M. Drexler, and N. P. Padture, "High quality, transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire," Applied Physics Letters, vol. 98, pp. 113117, 2011.
[35] L. Tao, J. Lee, H. Chou, M. Holt, R. S. Ruoff, and D. Akinwande, "Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films," ACS Nano, vol. 6, pp. 2319-2325, 2012.
[36] 李正中, "薄膜光學與鍍膜技術" , 七版, 藝軒圖書出版社, 2012.
[37] 王宣文, "以濺鍍法製作矽異質接面太陽能電池之研究: 矽薄膜特性對元件效率的影響," 國立中央大學,博士論文, 2012.
[38] "Raman_spectroscopy,"Wikipedia,http://en.wikipedia.org/wiki/Raman_spectroscopy.
[39] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, vol. 473, pp. 51-87, 2009.
[40] 汪建民, "材料分析",中國材料科學學會, 1998.
[41] 黃宏勝、林麗娟, "FE-SEM/CL/EBSD 分析技術," 工業材料雜誌, vol. 201, pp. 99-108, 2003.
[42] P. Blake, E. Hill, A. C. Neto, K. Novoselov, D. Jiang, R. Yang, et al., "Making graphene visible," Applied Physics Letters, vol. 91, pp. 063124, 2007.
[43] 繆紹綱, 數位影像處理: 活用 Matlab: 台北市: 全華科技圖書公司, 1999.
[44] "中值濾波器," Wikipedia, http://zh.wikipedia.org/wiki/中值濾波器.
[45] B. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, et al., "Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD," Carbon, vol. 50, pp. 57-65, 2012.
[46] J. Zhang and K. Xu, "Investigation of abnormal grain growth an texture change in Ag and Cu films," Acta Physica Sinica, vol. 52, pp. 145-149, 2003.
[47] I. V. Antonova, "Chemical vapor deposition growth of graphene on copper substrates: current trends," Physics-Uspekhi, vol. 56, pp. 1013, 2013.
[48] D. G. Gromov and S. A. Gavrilov, " Thermodynamics – Physical Chemistry of Aqueous Systems " ,InTech Publisher,2011
[49] R. M. Jacobberger and M. S. Arnold, "Graphene Growth Dynamics on Epitaxial Copper Thin Films," Chemistry of Materials, vol. 25, pp. 871-877, 2013.
[50] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, et al., "Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene," Acs Nano, vol. 5, pp. 6069-6076, 2011.
[51] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, 2007.
[52] J. D. Wood, S. W. Schmucker, A. S. Lyons, E. Pop, and J. W. Lyding, "Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition," Nano Letters, vol. 11, pp. 4547-4554, 2011.
[53] W.-H. Lin, T.-H. Chen, J.-K. Chang, J.-I. Taur, Y.-Y. Lo, W.-L. Lee, et al., "A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate," ACS Nano, vol. 8, pp. 1784-1791, 2014.
[54] J. Zhang, P. Hu, X. Wang, Z. Wang, D. Liu, B. Yang, et al., "CVD growth of large area and uniform graphene on tilted copper foil for high performance flexible transparent conductive film," Journal of Materials Chemistry, vol. 22, pp. 18283, 2012.
[55] T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, et al., "Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process," Applied Physics Letters, vol. 102, pp. 023112, 2013.
[56] W. H. Lee, J. W. Suk, J. Lee, Y. Hao, J. Park, J. W. Yang, et al., "Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic," Acs Nano, vol. 6, pp. 1284-1290, 2012.